Advertisement

Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field

  • Yukang Yang
  • Youheng DongEmail author
  • Yinghui LiEmail author
Regular Article
  • 11 Downloads

Abstract

Buckling and post-buckling behaviors of simply supported microplates in complex environment are studied, where elastic foundation and hygro-thermal-electro-mechanical loads are considered. The first-order shear deformation theory is used to establish basic equations of the microplate considering the von Kármán’s nonlinearity. The size-dependent effect is characterized by the modified couple stress theory. A unified boundary condition model is introduced to discuss various in-plane boundary conditions (BCs). Analytical solutions for critical mechanical/hygrothermal buckling loads and post-buckling paths of the microplate under different in-plane BCs are obtained by using the perturbation method and the Galerkin method, respectively. Results reveal that size-dependent effect and elastic foundation enhance the stiffness of the microplate. Transverse displacement of the microplate in the post-buckling stage increases with the external compressive load, temperature and moisture concentration, expressing a nonlinear curve. When the displacement constraint in the normal direction is applied on the microplate edge, the critical mechanical/hygrothermal buckling load decreases. These results can be utilized in the optimization design of the micro-electro-mechanical systems.

Graphical abstract

Notes

Acknowledgements

Yinghui Li was supported by National Natural Science Foundation of China (Grant no. 11872319).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    B. Tandon, J.J. Blaker, S.H. Cartmell, Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018)CrossRefGoogle Scholar
  2. 2.
    J.Y. Cao, A. Syta, G. Litak, S.X. Zhou, D.J. Inman, Y.Q. Chen, Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 130(6), 103 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Guo, Y.S. Wang, C. Yang, X.L. Wang, N.N. Liu, Z.J. Xu, Vehicle interior noise active control based on piezoelectric ceramic materials and improved fuzzy control algorithm. Appl. Acoust. 150, 216–226 (2019)CrossRefGoogle Scholar
  4. 4.
    J.Y. Chen, Q.W. Qiu, Y.L. Han, D. Lau, Piezoelectric materials for sustainable building structures: fundamentals and applications. Renew. Sustain. Energy Rev. 101, 14–25 (2019)CrossRefGoogle Scholar
  5. 5.
    F. Ejeian, S. Azadi, A. Razmjou, Y. Orooji, A. Kottapalli, M.E. Warkiani, M. Asadnia, Design and applications of MEMS flow sensors: a review. Sens. Actuators A Phys. 295, 483–502 (2019)CrossRefGoogle Scholar
  6. 6.
    M. Kabir, H. Kazari, D. Ozevin, Piezoelectric MEMS acoustic emission sensors. Sens. Actuators A Phys. 279, 53–64 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Daeichin, M. Ozdogan, S. Towfighian, R. Miles, Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens. Actuators A Phys. 289, 34–43 (2019)CrossRefGoogle Scholar
  8. 8.
    Y. Pei, W.D. Wang, G.J. Zhang, J.W. Ding, Q.D. Xu, X.Y. Zhang, S.H. Yang, N.X. Shen, Y.Q. Lian, L.S. Zhang, R.X. Wang, W.D. Zhang, Design and implementation of T-type MEMS heart sound sensor. Sens. Actuators A Phys. 285, 308–318 (2019)CrossRefGoogle Scholar
  9. 9.
    M.R. Naik, U.N. Kempaiah, Kumarchannaveeresh, Directional optimization of MEMS piezoelectric hydrophone for underwater application. Mater. Today Proc. 5(1, Part 1), 823–829 (2018)CrossRefGoogle Scholar
  10. 10.
    R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Chong, F. Yang, D. Lam, P. Tong, Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)CrossRefGoogle Scholar
  13. 13.
    R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)CrossRefGoogle Scholar
  14. 14.
    C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Simsek, J.N. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    H.M. Ma, X.L. Gao, J.N. Reddy, A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.N. Reddy, J. Berry, Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress. Compos. Struct. 94(12), 3664–3668 (2012)CrossRefGoogle Scholar
  20. 20.
    M.A. Abazid, M. Sobhy, Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst. Technol. 24(2), 1227–1245 (2018)CrossRefGoogle Scholar
  21. 21.
    A.M .Zenkour, R.A. Alghanmi. Hygro-thermo-electro-mechanical bending analysis of sandwich plates with FG core and piezoelectric faces. Mechanics of Advanced Materials and Structures (2019), pp. 1–13Google Scholar
  22. 22.
    J. Lou, L.W. He, J.K. Du, H.P. Wu, Buckling and post-buckling analyses of piezoelectric hybrid microplates subject to thermocelectro-mechanical loads based on the modified couple stress theory. Compos. Struct. 153, 332–344 (2016)CrossRefGoogle Scholar
  23. 23.
    M.M. Barooti, H. Safarpour, M. Ghadiri, Critical speed and free vibration analysis of spinning 3d single-walled carbon nanotubes resting on elastic foundations. Eur. Phys. J. Plus 132(1), 6 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Nourmohammadi, B. Behjat, Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM. Eng. Anal. Bound. Elem. 99, 131–141 (2019)MathSciNetCrossRefGoogle Scholar
  25. 25.
    X.C. Chen, Y.H. Li, Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech. Res. Commun. 88, 25–33 (2018)CrossRefGoogle Scholar
  26. 26.
    K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation. Eur. Phys. J. Plus 132(3), 115 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.H. Dong, Y.F. Zhang, Y.H. Li, An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect. Compos. Struct. 170, 11–25 (2017)CrossRefGoogle Scholar
  28. 28.
    H.T. Thai, D.H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)CrossRefGoogle Scholar
  29. 29.
    S.S. Mirjavadi, M. Forsat, M.R. Barati, G.M. Abdella, M.B. Afshari, A.M.S. Hamouda, S. Rabby, Dynamic response of metal foam fg porous cylindrical micro-shells due to moving loads with strain gradient size-dependency. Eur. Phys. J. Plus 134(5), 214 (2019)CrossRefGoogle Scholar
  30. 30.
    Y.H. Dong, L.W. He, L. Wang, Y.H. Li, J. Yang, Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82–83, 466–478 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Lou, L.W. He, Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Compos. Struct. 131, 810–820 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Akhavan, S.H. Hashemi, H.R.D. Taher, A. Alibeigloo, S. Vahabi, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: buckling analysis. Comput. Mater. Sci. 44(3), 968–978 (2009)CrossRefGoogle Scholar
  33. 33.
    Sobhy, Mohammed, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013)CrossRefGoogle Scholar
  34. 34.
    H.S. Shen, Thermal postbuckling analysis of imperfect Reissner–Mindlin plates on softening nonlinear elastic foundations. J. Eng. Math. 33(3), 259–270 (1998)MathSciNetCrossRefGoogle Scholar
  35. 35.
    K.M. Liew, J. Yang, S. Kitipornchai, Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int. J. Solids Struct. 40(15), 3869–3892 (2003)CrossRefGoogle Scholar
  36. 36.
    M.R. Nami, M. Janghorban, M. Damadam, Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory. Aerosp. Sci. Technol. 41, 7–15 (2015)CrossRefGoogle Scholar
  37. 37.
    L.W. He, J. Lou, E.Y. Zhang, Y. Wang, Y. Bai, A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory. Compos. Struct. 130, 107–115 (2015)CrossRefGoogle Scholar
  38. 38.
    A.M. Zenkour, Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder. Appl. Math. Model. 38(24), 6133–6143 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    A.J. Beveridge, M.A. Wheel, D.H. Nash, The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50(1), 246–255 (2013)CrossRefGoogle Scholar
  40. 40.
    N.D. Duc, P.H. Cong, V.D. Quang, Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci. 115–116, 711–722 (2016)CrossRefGoogle Scholar
  41. 41.
    C.M.C. Roque, A.J.M. Ferreira, J.N. Reddy, Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37(7), 4626–4633 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations