Advertisement

Magnetic and optical properties of Co-doped ZnO nanorod arrays

  • Wei Wang
  • Fuchun ZhangEmail author
  • Xiaoyang Wang
  • Shuili Zhang
  • Junfeng YanEmail author
  • Weibin ZhangEmail author
  • Weihu Zhang
Regular Article
  • 16 Downloads

Abstract

In this study, Zn1−xCoxO nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn1−xCoxO nanorod arrays were studied. Surface characterization showed Zn1−xCoxO nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn1−xCoxO nanorod arrays. The room-temperature ferromagnetism of Zn1−xCoxO nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10–4 emu/g, the residual magnetization of 1.1 × 10–4 emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn1−xCoxO nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn1−xCoxO nanorod arrays can be used as potential magneto-optical materials.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No.: 61664008), the National Natural Science Foundation of Shaanxi Province (Grant No.: 2017JM6102), the Scientific and Technological Innovation Team (Grant No.: 2017CXTD-01), the Natural Science of Foundation of Hubei Province, China (Grant No.: 2019CFB225).

References

  1. 1.
    S.H. Basri, W.H. AbdMajid, N.A. Talik, M.A.M. Sarjidan, Tailoring electronics structure, electrical and magnetic properties of synthesized transition metal (Ni)-doped ZnO thin film. J. Alloys Compd. 769, 640–648 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Ozgür, D. Hofstetter, H. Morkoç, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98, 1255–1268 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Klingshirn, ZnO: from basics towards applications Phys. Status Solidi Basic Res. 244, 3027–3073 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Liu, M.H. Yu, W.L. Zhou, Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. Appl. Phys. 99, 08M119 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Lin, D. Jiang, F. Lin, W. Shi, X. Ma, Fe-doped ZnO magnetic semiconductor by mechanical alloying. J. Alloy Compd. 436, 30–33 (2007)CrossRefGoogle Scholar
  7. 7.
    I. Javed, J. Tariq, R.H. Yu, Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. J. Mater. Sci. Mater. Electron 24, 4393–4398 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Gwilym, H. Matthew, B. Benedikt, M. Andrew, T. Michael, H. Daniel, G. Sean, R. Dan, R. John, R. Allenspach, S. Ladak, Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11, 845–854 (2018)Google Scholar
  9. 9.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. DaCol, S. Jamet, N. Rougemaille, A. Locatelli, T.O. Mentes, B.S. Burgos, R. Afid, M. Darques, L. Cagnon, J.C. Toussaint, O. Fruchart, Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 89, 180405 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y.P. Ivanov, A. Chuvilin, L.G. Vivas, J. Kosel, O. Chubykalo-Fesenko, M. Vázquez, Single crystalline cylindrical nanowires—toward dense 3D arrays of magnetic vortices. Sci. Rep. 6, 23844 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y.X. Wang, H. Liu, Z.Q. Li, X.X. Zhang, R.K. Zheng, S.P. Ringer, Role of structural defects on ferromagnetism in amorphous Cr-doped TiO2 films. Appl. Phys. Lett. 89, 042511 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.F. Tian, Y.X. Chen, S.S. Yan, L.M. Mei, High TC ferromagnetism of Zn(1–x)CoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 90, 052504 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, M. Kawasaki, Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 62 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    A.F. Kohan, G. Ceder, D. Morgan, C.G. Vande Walle, First principles study of native point defects in ZnO. Phys. Rev. B 61, 15019–15027 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 214, 254–256 (2018)CrossRefGoogle Scholar
  17. 17.
    W. Wang, F.C. Zhang, Q. Zhou, X.Y. Wang, S.L. Zhang, J.F. Yan, W.H. Zhang, Fabrication and optical property of ZnO nanorod array by hydrothermal method. Ferroelectrics 549(1), 204–211 (2018)CrossRefGoogle Scholar
  18. 18.
    P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Phys. Chem. B 106, 7729–7744 (2002)CrossRefGoogle Scholar
  19. 19.
    S.H. Lee, S.S. Lee, J.J. Choi, J.U. Jeon, K. Ro, Fabrication of a ZnO piezoelectric micro cantilever with a high-aspect-ratio nano tip. Microsyst. Technol. 11, 416–423 (2005)CrossRefGoogle Scholar
  20. 20.
    P.X. Gao, Z.L. Wang, Nano architectures of semiconducting and piezoelectric zinc oxide. Appl. Phys. 97, 044304−1−7 (2005)Google Scholar
  21. 21.
    X.B. Zhang, H. Xin, J.J. Cheng, Preparation and research progress of modified nano zinc oxide. J. Synth. Cryst. 10, 2054–2057 (2017)Google Scholar
  22. 22.
    A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, Y.D. Meng, Structure and photoluminescence properties of Fe-doped ZnO thin films. Phys. D Appl. Phys 39, 4762–4765 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G.Y. Ahn, S.I. Park, S.J. Kim, B.W. Lee, C.S. Kim, Preparation of Fe-doped ZnO ferromagnetic semiconductor by Sol-Gel method with hydrogen treatment. IEEE Trans. Magn. 41, 2730 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, Local Fe structure and ferromagnetism in Fe-doped ZnO films. Phys. Condens. Matter 18, 7471–7479 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S.W. Yoon, S.B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song, Y.J. Shin, Magnetic properties of ZnO-based diluted magnetic semiconductors. Appl. Phys. 93, 7879–7881 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Kolesnik, B. Dabrowski, J. Mais, Structural and magnetic properties of transition metal substituted ZnO. Appl. Phys. 95, 2582–2586 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Geburt, R. Röder, U. Kaiser, L.M. Chen, M.H. Chu, J.S. Ruiz, G.M. Criado, W. Heimbrodt, C. Ronning, Intense intra-3d luminescence and waveguide properties of single Co-doped ZnO nanowires. Phys. Status Solidi 7, 886–889 (2013)Google Scholar
  28. 28.
    C. Cheng, G.Y. Xu, H.Q. Zhang, Y. Li, Solution synthesis, optical and magnetic properties of Zn1−x CoxO nanowires. Mater. Lett. 62, 3733–3737 (2008)CrossRefGoogle Scholar
  29. 29.
    R. Ponnusamy, S.C. Selvaraj, M. Ramachandran, P. Murugan, P.M.G. Nambissan, D. Sivasubramanian, Diverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles. Cryst. Growth Des. 16, 3656–3668 (2016)CrossRefGoogle Scholar
  30. 30.
    D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 12, 3994–4000 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    E.Z. Liu, N.Q. Zhao, J.J. Li, X.W. Du, C.S. Shi, Surface state induced ferromagnetism in Co- and Mn-doped ZnO surfaces. Phys. Chem. C 115, 3368–3371 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Tahir, A. Karim, K.A. Persson, S.T. Hussain, A.G. Cruz, M. Usman, M. Naeem, R.M. Qiao, W.L. Yang, Y.D. Chuang, Z. Hussain, Surface defects: possible source of room temperature ferromagnetism in Co-doped ZnO nanorods. Phys. Chem. C 117, 8968–8973 (2013)CrossRefGoogle Scholar
  33. 33.
    A.D. Trolio, P. Alippi, E.M. Bauer, G. Ciatto, M.H. Chu, G. Varvaro, A. Polimeni, M. Capizzi, M. Valentini, F. Bobba, C.D. Giorgio, A.A. Bonapasta, Ferromagnetism and conductivity in hydrogen irradiated Co-doped ZnO thin films. ACS Appl. Mater. Interfaces 8, 12925–12931 (2016)CrossRefGoogle Scholar
  34. 34.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO: Co2+ nanoparticles. J. Colloid Interface Sci. 345(2), 149–153 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    W.H. Zhao, Z.Q. Wei, L. Zhang, X.J. Wu, X. Wang, J.L. Jiang, Optical and magnetic properties of Co and Ni co-doped ZnS nanorods prepared by hydrothermal method. J Alloy Compd. 698, 754–760 (2017)CrossRefGoogle Scholar
  36. 36.
    A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshardri, Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    M. Bouloudenine, S. Colis, N. Viart, J. Kortus, A. Dinia, Antiferromagnetism in bulk Zn1−xCoxO magnetic semiconductors prepared by the coprecipitation technique. Appl. Phys. Lett. 87, 052501 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    C.N.R. Rao, F.L. Deepak, Absence of ferromagnetism in Mn- and Co-doped ZnO. J. Mater. Chem. 15, 573–578 (2005)CrossRefGoogle Scholar
  39. 39.
    H.L. Yan, J.B. Wang, X.L. Zhong, Y.C. Zhou, Spatial distribution of manganese and room temperature ferromagnetism in manganese-doped ZnO nanorods. Appl. Phys. Lett. 93, 142502 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Q. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, A. Setzer, P. Eaquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. Appl. Phys. Lett. 91, 092503 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80, 035331 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    P. Dev, H. Zeng, P. Zhang, Defect-induced magnetism in nitride and oxide nanowires: Surface effects and quantum confinement. Phys. Rev. B 82, 165319 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators B 69, 74–80 (2012)CrossRefGoogle Scholar
  44. 44.
    A.K. Singh, G.S. Thool, P.R. Bangal, S.S. Madhavendra, S.P. Singh, Low temperature Mn doped ZnO nanorod array: synthesis and its photoluminescence behavior. Ind. Eng. Chem. Res. 53, 9383–9390 (2014)CrossRefGoogle Scholar
  45. 45.
    W.H. Zhao, Z.Q. Wei, L. Ma, J.H. Liang, X.D. Zhang, Ag2S quantum dots based on flower-like SnS2 as matrix and enhanced photocatalytic degradation. Materials 12, 582 (2019)ADSCrossRefGoogle Scholar
  46. 46.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)CrossRefGoogle Scholar
  47. 47.
    Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem. Commun. 21, 712–713 (2004)CrossRefGoogle Scholar
  48. 48.
    R.G.S. Pala, H. Metiu, Modification of the oxidative power of ZnO (1010) surface by substituting some surface Zn atoms with other metals. Phys. Chem. C 111, 8617–8622 (2007)CrossRefGoogle Scholar
  49. 49.
    R.G.S. Pala, W. Tang, M.M. Sushchikh, J.N. Park, A.J. Forman, G. Wu, A. Kleiman-Shwarsctein, J. Zhang, E.W. McFarland, H. Metiu, CO oxidation by Ti- and Al-doped ZnO: oxygen activation by adsorption on the dopant. J. Catal. 266, 50–58 (2009)CrossRefGoogle Scholar
  50. 50.
    L.M. Hang, Fabrication and properties of rod-like ZnO-based diluted magnetic semiconductors. Ph.D. Dissertation, Xi'an Institute of Optical Precision Machinery, Chinese Academy of Sciences (2012)Google Scholar
  51. 51.
    M.X. Yuan, Preparation and doping of zinc oxide nanorod arrays and their properties. Master's Degree Thesis, Jilin University (2009)Google Scholar
  52. 52.
    R.A. He, S.W. Cao, P. Zhou, J.G. Yu, Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 35, 989–1007 (2014)CrossRefGoogle Scholar
  53. 53.
    J. Li, Y. Yu, L.Z. Zhang, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    G.J. Wang, Z.C. Li, M.Y. Li, Y.M. Feng, W. Li, S.S. Lv, J.C. Liao, Synthesizing vertical porous ZnO nanowires arrays on Si/ITO substrate for enhanced photocatalysis. Ceram. Int. 44, 1291–1295 (2018)CrossRefGoogle Scholar
  55. 55.
    S. Das, A. Bandyopadhyay, P. Saha, S. Das, S. Sutradhar, Enhancement of room-temperature ferromagnetism and dielectric response in nanocrystalline ZnO co-doped with Co and Cu. J. Alloy Compd. 749, 1–9 (2018)CrossRefGoogle Scholar
  56. 56.
    J.J. Lee, G.Z. Xing, J.B. Yi, T. Chen, M. Ionescu, S. Li, Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements co-doping. Appl. Phys. Lett. 104, 012405 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    M. El-Hilo, A.A. Dakhel, Z.J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesised by co-precipitation method: efficient effect of hydrogenation on the long-range ferromagnetic order. J. Magn. Magn. Mater. 482, 125–134 (2019)ADSCrossRefGoogle Scholar
  58. 58.
    Y.R. Wang, X. Luo, L.T. Tseng, Z.M. Ao, T. Li, G.Z. Xing, N.N. Bao, K. Suzukiis, J. Ding, S. Li, J.B. Yi, Ferromagnetism and crossover of positive magneto resistance to negative magneto resistance in Na-doped ZnO. Chem. Mater. 27, 1285–1291 (2015)CrossRefGoogle Scholar
  59. 59.
    A.K. Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, P.M. Shirage, Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure. ACS Appl. Mater. Interfaces 9, 7691–7700 (2017)CrossRefGoogle Scholar
  60. 60.
    R. Knut, J.M. Wikberg, K. Lashgari, V.A. Coleman, G. Westin, P. Svedlindh, O. Karis, Magnetic and electronic characterization of highly Co-doped ZnO: an annealing study at the solubility limit. Phys. Rev. B 82, 094438 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    W.H. Zhao, Z.Q. Wei, Y.J. He, X.L. Zhu, X.D. Zhang, L. Ma, J.H. Liang, Fluorescence emission and ferromagnetic of Zn0.97-xNi0.03CoxS nanorods synthesized via a hydrothermal route. Materials 12, 582 (2019)Google Scholar
  62. 62.
    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci 6, 15–50 (1996)CrossRefGoogle Scholar
  63. 63.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  64. 64.
    B. Liu, L.J. Wu, Y.Q. Zhao, L.Z. Wang, M.Q. Cai, A first-principles study of magnetic variation via doping vacancy in monolayer VS2. Magn. Magn. Mater. 420, 218–224 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  66. 66.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.J. Kim, Investigation of UV photoresponse property of Al N co-doped ZnO film. Alloy. Compd. 580, 538–543 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationYan’an UniversityYan’anPeople’s Republic of China
  2. 2.College of Information Science and TechnologyNorthwest UniversityXi’anPeople’s Republic of China
  3. 3.School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  4. 4.Communication and Information Engineering CollegeXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations