Magnetic and optical properties of Co-doped ZnO nanorod arrays

  • 28 Accesses


In this study, Zn1−xCoxO nanorod arrays were deposited on Si substrates by magnetron sputtering followed by the hydrothermal method at 100 °C. The effects of doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of the obtained Zn1−xCoxO nanorod arrays were studied. Surface characterization showed Zn1−xCoxO nanorod arrays with uniform and dense distributions along the [0001] direction with the hexagonal wurtzite structure. Besides, no impurity phases were detected in Zn1−xCoxO nanorod arrays. The room-temperature ferromagnetism of Zn1−xCoxO nanorod arrays was detected based upon the high-saturation magnetization of 4.4 × 10–4 emu/g, the residual magnetization of 1.1 × 10–4 emu/g and the coercive field of 309 Oe. Furthermore, the photoluminescence (PL) spectra exhibited by the Zn1−xCoxO nanorod arrays with the luminescence intensity in the ultraviolet region were nearly five times that of the pure ZnO nanorod arrays. With the increase in the Co2+ doping concentration, the redshift in the ultraviolet emission peaks was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Co 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Co 3d and partial contribution of O 2p orbital electrons. These results indicated that Zn1−xCoxO nanorod arrays can be used as potential magneto-optical materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    S.H. Basri, W.H. AbdMajid, N.A. Talik, M.A.M. Sarjidan, Tailoring electronics structure, electrical and magnetic properties of synthesized transition metal (Ni)-doped ZnO thin film. J. Alloys Compd. 769, 640–648 (2018)

  2. 2.

    M. Ozgür, D. Hofstetter, H. Morkoç, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98, 1255–1268 (2010)

  3. 3.

    C. Klingshirn, ZnO: from basics towards applications Phys. Status Solidi Basic Res. 244, 3027–3073 (2007)

  4. 4.

    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)

  5. 5.

    J.J. Liu, M.H. Yu, W.L. Zhou, Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. Appl. Phys. 99, 08M119 (2006)

  6. 6.

    Y. Lin, D. Jiang, F. Lin, W. Shi, X. Ma, Fe-doped ZnO magnetic semiconductor by mechanical alloying. J. Alloy Compd. 436, 30–33 (2007)

  7. 7.

    I. Javed, J. Tariq, R.H. Yu, Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. J. Mater. Sci. Mater. Electron 24, 4393–4398 (2013)

  8. 8.

    W. Gwilym, H. Matthew, B. Benedikt, M. Andrew, T. Michael, H. Daniel, G. Sean, R. Dan, R. John, R. Allenspach, S. Ladak, Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11, 845–854 (2018)

  9. 9.

    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

  10. 10.

    S. DaCol, S. Jamet, N. Rougemaille, A. Locatelli, T.O. Mentes, B.S. Burgos, R. Afid, M. Darques, L. Cagnon, J.C. Toussaint, O. Fruchart, Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 89, 180405 (2014)

  11. 11.

    Y.P. Ivanov, A. Chuvilin, L.G. Vivas, J. Kosel, O. Chubykalo-Fesenko, M. Vázquez, Single crystalline cylindrical nanowires—toward dense 3D arrays of magnetic vortices. Sci. Rep. 6, 23844 (2016)

  12. 12.

    Y.X. Wang, H. Liu, Z.Q. Li, X.X. Zhang, R.K. Zheng, S.P. Ringer, Role of structural defects on ferromagnetism in amorphous Cr-doped TiO2 films. Appl. Phys. Lett. 89, 042511 (2006)

  13. 13.

    G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.F. Tian, Y.X. Chen, S.S. Yan, L.M. Mei, High TC ferromagnetism of Zn(1–x)CoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 90, 052504 (2007)

  14. 14.

    T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, M. Kawasaki, Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 62 (2004)

  15. 15.

    A.F. Kohan, G. Ceder, D. Morgan, C.G. Vande Walle, First principles study of native point defects in ZnO. Phys. Rev. B 61, 15019–15027 (2000)

  16. 16.

    R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 214, 254–256 (2018)

  17. 17.

    W. Wang, F.C. Zhang, Q. Zhou, X.Y. Wang, S.L. Zhang, J.F. Yan, W.H. Zhang, Fabrication and optical property of ZnO nanorod array by hydrothermal method. Ferroelectrics 549(1), 204–211 (2018)

  18. 18.

    P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Phys. Chem. B 106, 7729–7744 (2002)

  19. 19.

    S.H. Lee, S.S. Lee, J.J. Choi, J.U. Jeon, K. Ro, Fabrication of a ZnO piezoelectric micro cantilever with a high-aspect-ratio nano tip. Microsyst. Technol. 11, 416–423 (2005)

  20. 20.

    P.X. Gao, Z.L. Wang, Nano architectures of semiconducting and piezoelectric zinc oxide. Appl. Phys. 97, 044304−1−7 (2005)

  21. 21.

    X.B. Zhang, H. Xin, J.J. Cheng, Preparation and research progress of modified nano zinc oxide. J. Synth. Cryst. 10, 2054–2057 (2017)

  22. 22.

    A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, Y.D. Meng, Structure and photoluminescence properties of Fe-doped ZnO thin films. Phys. D Appl. Phys 39, 4762–4765 (2006)

  23. 23.

    G.Y. Ahn, S.I. Park, S.J. Kim, B.W. Lee, C.S. Kim, Preparation of Fe-doped ZnO ferromagnetic semiconductor by Sol-Gel method with hydrogen treatment. IEEE Trans. Magn. 41, 2730 (2005)

  24. 24.

    X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, Local Fe structure and ferromagnetism in Fe-doped ZnO films. Phys. Condens. Matter 18, 7471–7479 (2006)

  25. 25.

    S.W. Yoon, S.B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song, Y.J. Shin, Magnetic properties of ZnO-based diluted magnetic semiconductors. Appl. Phys. 93, 7879–7881 (2003)

  26. 26.

    S. Kolesnik, B. Dabrowski, J. Mais, Structural and magnetic properties of transition metal substituted ZnO. Appl. Phys. 95, 2582–2586 (2004)

  27. 27.

    S. Geburt, R. Röder, U. Kaiser, L.M. Chen, M.H. Chu, J.S. Ruiz, G.M. Criado, W. Heimbrodt, C. Ronning, Intense intra-3d luminescence and waveguide properties of single Co-doped ZnO nanowires. Phys. Status Solidi 7, 886–889 (2013)

  28. 28.

    C. Cheng, G.Y. Xu, H.Q. Zhang, Y. Li, Solution synthesis, optical and magnetic properties of Zn1−x CoxO nanowires. Mater. Lett. 62, 3733–3737 (2008)

  29. 29.

    R. Ponnusamy, S.C. Selvaraj, M. Ramachandran, P. Murugan, P.M.G. Nambissan, D. Sivasubramanian, Diverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles. Cryst. Growth Des. 16, 3656–3668 (2016)

  30. 30.

    D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 12, 3994–4000 (2012)

  31. 31.

    E.Z. Liu, N.Q. Zhao, J.J. Li, X.W. Du, C.S. Shi, Surface state induced ferromagnetism in Co- and Mn-doped ZnO surfaces. Phys. Chem. C 115, 3368–3371 (2011)

  32. 32.

    N. Tahir, A. Karim, K.A. Persson, S.T. Hussain, A.G. Cruz, M. Usman, M. Naeem, R.M. Qiao, W.L. Yang, Y.D. Chuang, Z. Hussain, Surface defects: possible source of room temperature ferromagnetism in Co-doped ZnO nanorods. Phys. Chem. C 117, 8968–8973 (2013)

  33. 33.

    A.D. Trolio, P. Alippi, E.M. Bauer, G. Ciatto, M.H. Chu, G. Varvaro, A. Polimeni, M. Capizzi, M. Valentini, F. Bobba, C.D. Giorgio, A.A. Bonapasta, Ferromagnetism and conductivity in hydrogen irradiated Co-doped ZnO thin films. ACS Appl. Mater. Interfaces 8, 12925–12931 (2016)

  34. 34.

    P.K. Sharma, R.K. Dutta, A.C. Pandey, Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO: Co2+ nanoparticles. J. Colloid Interface Sci. 345(2), 149–153 (2010)

  35. 35.

    W.H. Zhao, Z.Q. Wei, L. Zhang, X.J. Wu, X. Wang, J.L. Jiang, Optical and magnetic properties of Co and Ni co-doped ZnS nanorods prepared by hydrothermal method. J Alloy Compd. 698, 754–760 (2017)

  36. 36.

    A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshardri, Magnetism in polycrystalline cobalt-substituted zinc oxide. Phys. Rev. B 68, 205202 (2003)

  37. 37.

    M. Bouloudenine, S. Colis, N. Viart, J. Kortus, A. Dinia, Antiferromagnetism in bulk Zn1−xCoxO magnetic semiconductors prepared by the coprecipitation technique. Appl. Phys. Lett. 87, 052501 (2005)

  38. 38.

    C.N.R. Rao, F.L. Deepak, Absence of ferromagnetism in Mn- and Co-doped ZnO. J. Mater. Chem. 15, 573–578 (2005)

  39. 39.

    H.L. Yan, J.B. Wang, X.L. Zhong, Y.C. Zhou, Spatial distribution of manganese and room temperature ferromagnetism in manganese-doped ZnO nanorods. Appl. Phys. Lett. 93, 142502 (2008)

  40. 40.

    Q. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, A. Setzer, P. Eaquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. Appl. Phys. Lett. 91, 092503 (2007)

  41. 41.

    M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80, 035331 (2009)

  42. 42.

    P. Dev, H. Zeng, P. Zhang, Defect-induced magnetism in nitride and oxide nanowires: Surface effects and quantum confinement. Phys. Rev. B 82, 165319 (2010)

  43. 43.

    P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators B 69, 74–80 (2012)

  44. 44.

    A.K. Singh, G.S. Thool, P.R. Bangal, S.S. Madhavendra, S.P. Singh, Low temperature Mn doped ZnO nanorod array: synthesis and its photoluminescence behavior. Ind. Eng. Chem. Res. 53, 9383–9390 (2014)

  45. 45.

    W.H. Zhao, Z.Q. Wei, L. Ma, J.H. Liang, X.D. Zhang, Ag2S quantum dots based on flower-like SnS2 as matrix and enhanced photocatalytic degradation. Materials 12, 582 (2019)

  46. 46.

    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)

  47. 47.

    Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem. Commun. 21, 712–713 (2004)

  48. 48.

    R.G.S. Pala, H. Metiu, Modification of the oxidative power of ZnO (1010) surface by substituting some surface Zn atoms with other metals. Phys. Chem. C 111, 8617–8622 (2007)

  49. 49.

    R.G.S. Pala, W. Tang, M.M. Sushchikh, J.N. Park, A.J. Forman, G. Wu, A. Kleiman-Shwarsctein, J. Zhang, E.W. McFarland, H. Metiu, CO oxidation by Ti- and Al-doped ZnO: oxygen activation by adsorption on the dopant. J. Catal. 266, 50–58 (2009)

  50. 50.

    L.M. Hang, Fabrication and properties of rod-like ZnO-based diluted magnetic semiconductors. Ph.D. Dissertation, Xi'an Institute of Optical Precision Machinery, Chinese Academy of Sciences (2012)

  51. 51.

    M.X. Yuan, Preparation and doping of zinc oxide nanorod arrays and their properties. Master's Degree Thesis, Jilin University (2009)

  52. 52.

    R.A. He, S.W. Cao, P. Zhou, J.G. Yu, Recent advances in visible light Bi-based photocatalysts. Chin. J. Catal. 35, 989–1007 (2014)

  53. 53.

    J. Li, Y. Yu, L.Z. Zhang, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014)

  54. 54.

    G.J. Wang, Z.C. Li, M.Y. Li, Y.M. Feng, W. Li, S.S. Lv, J.C. Liao, Synthesizing vertical porous ZnO nanowires arrays on Si/ITO substrate for enhanced photocatalysis. Ceram. Int. 44, 1291–1295 (2018)

  55. 55.

    S. Das, A. Bandyopadhyay, P. Saha, S. Das, S. Sutradhar, Enhancement of room-temperature ferromagnetism and dielectric response in nanocrystalline ZnO co-doped with Co and Cu. J. Alloy Compd. 749, 1–9 (2018)

  56. 56.

    J.J. Lee, G.Z. Xing, J.B. Yi, T. Chen, M. Ionescu, S. Li, Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements co-doping. Appl. Phys. Lett. 104, 012405 (2014)

  57. 57.

    M. El-Hilo, A.A. Dakhel, Z.J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesised by co-precipitation method: efficient effect of hydrogenation on the long-range ferromagnetic order. J. Magn. Magn. Mater. 482, 125–134 (2019)

  58. 58.

    Y.R. Wang, X. Luo, L.T. Tseng, Z.M. Ao, T. Li, G.Z. Xing, N.N. Bao, K. Suzukiis, J. Ding, S. Li, J.B. Yi, Ferromagnetism and crossover of positive magneto resistance to negative magneto resistance in Na-doped ZnO. Chem. Mater. 27, 1285–1291 (2015)

  59. 59.

    A.K. Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, P.M. Shirage, Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure. ACS Appl. Mater. Interfaces 9, 7691–7700 (2017)

  60. 60.

    R. Knut, J.M. Wikberg, K. Lashgari, V.A. Coleman, G. Westin, P. Svedlindh, O. Karis, Magnetic and electronic characterization of highly Co-doped ZnO: an annealing study at the solubility limit. Phys. Rev. B 82, 094438 (2010)

  61. 61.

    W.H. Zhao, Z.Q. Wei, Y.J. He, X.L. Zhu, X.D. Zhang, L. Ma, J.H. Liang, Fluorescence emission and ferromagnetic of Zn0.97-xNi0.03CoxS nanorods synthesized via a hydrothermal route. Materials 12, 582 (2019)

  62. 62.

    G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci 6, 15–50 (1996)

  63. 63.

    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27, 1787–1799 (2006)

  64. 64.

    B. Liu, L.J. Wu, Y.Q. Zhao, L.Z. Wang, M.Q. Cai, A first-principles study of magnetic variation via doping vacancy in monolayer VS2. Magn. Magn. Mater. 420, 218–224 (2016)

  65. 65.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

  66. 66.

    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998)

  67. 67.

    B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.J. Kim, Investigation of UV photoresponse property of Al N co-doped ZnO film. Alloy. Compd. 580, 538–543 (2013)

Download references


This research was supported by the National Natural Science Foundation of China (Grant No.: 61664008), the National Natural Science Foundation of Shaanxi Province (Grant No.: 2017JM6102), the Scientific and Technological Innovation Team (Grant No.: 2017CXTD-01), the Natural Science of Foundation of Hubei Province, China (Grant No.: 2019CFB225).

Author information

Correspondence to Fuchun Zhang or Junfeng Yan or Weibin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, F., Wang, X. et al. Magnetic and optical properties of Co-doped ZnO nanorod arrays. Eur. Phys. J. Plus 135, 40 (2020) doi:10.1140/epjp/s13360-019-00086-z

Download citation