Advertisement

A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines

  • 34 Accesses

Abstract

In the present work, a new stochastic computing technique based on evolutionary cubic spline method (CSM) is introduced for solving nonlinear singular Thomas–Fermi system arising in atomic physics. The concept of cubic splines interpolation is engaged with an evolutionary optimization technique based on genetic algorithms (GAs) hybrid with sequential quadratic programming (SQP) to develop a proposed methodology, CSM-GASQP, that can solve nonlinear differential equations, and GA produces the optimized value for the coefficients of cubic splines, while SQP is used for rapid local refinements. The developed method CSM-GASQP for different lengths of the splines is applied effectively to solve the Thomas–Fermi equation for number of scenarios. Results show that proposed evolutionary paradigm CSM-GASQP is an effective, alternate, accurate, and reliable stochastic numerical solver for stiff nonlinear singular Thomas–Fermi systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    V. Bush, S.H. Caldwell, Thomas–Fermi equation solution by the differential analyzer. Phys. Rev. 38(10), 1898 (1931)

  2. 2.

    R. Latter, Atomic energy levels for the Thomas–Fermi and Thomas–Fermi–Dirac potential. Phys. Rev. 99(2), 510 (1955)

  3. 3.

    S. De, S. Chakrabarty, Thomas–Fermi and Thomas–Fermi–Dirac models in two-dimension–Effect of strong quantizing magnetic field. Eur. Phys. J. D 71(1), 5 (2017)

  4. 4.

    O.P. Shemyakin, P.R. Levashov, P.A. Krasnova, TFmix: a high-precision implementation of the finite-temperature Thomas–Fermi model for a mixture of atoms. Comput. Phys. Commun. 235, 378–387 (2019)

  5. 5.

    V. Kaiser, J. Comtet, A. Niguès, A. Siria, B. Coasne, L. Bocquet, Electrostatic interactions between ions near Thomas–Fermi substrates and the surface energy of ionic crystals at imperfect metals. Faraday Discuss. 199, 129–158 (2017)

  6. 6.

    S. Das, S. Ghosh, S. Chakrabarty, Thomas–Fermi model in Rindler space. Mod. Phys. Lett. A 32(33), 1750180 (2017)

  7. 7.

    L. Chen, H. Siedentop, The maximal negative ion of the time-dependent Thomas–Fermi and the Vlasov atom. J. Math. Phys. 59(5), 051902 (2018)

  8. 8.

    J. Clerouin, E.L. Pollock, G. Zerah, Thomas–Fermi molecular dynamics. Phys. Rev. A 46(8), 5130 (1992)

  9. 9.

    B. Banerjee, D.H. Constantinescu, P. Rehak, Thomas–Fermi and Thomas–Fermi–Dirac calculations for atoms in a very strong magnetic field. Phys. Rev. D 10(8), 2384 (1974)

  10. 10.

    E.H. Lieb, Thomas–Fermi and related theories of atoms and molecules. In The stability of matter: from atoms to stars, ed. by W. Thirring (Springer, Berlin, 1997), pp. 259–297

  11. 11.

    M. Turkyilmazoglu, Solution of the Thomas–Fermi equation with a convergent approach. Commun. Nonlinear Sci. Numer. Simul. 17, 4097–4103 (2012)

  12. 12.

    C. Jin, J. Ding, A maximum entropy method for solving the boundary value problem of second order ordinary differential equations. J. Math. Phys. 59(10), 103505 (2018)

  13. 13.

    A.-M. Wazwaz, The modified decomposition method and Padé approximants for solving the Thomas–Fermi equation. Appl. Math. Comput. 105, 11–19 (1999)

  14. 14.

    H. Fatoorehchi, H. Abolghasemi, An explicit analytic solution to the Thomas–Fermi equation by the improved differential transform method. Acta Phys. Polon. A 125, 1083–1087 (2014)

  15. 15.

    K. Parand, M. Shahini, Rational Chebyshev pseudospectral approach for solving Thomas–Fermi equation. Phys. Lett. A 373(2), 210–213 (2009)

  16. 16.

    K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-collocation method for solving the Thomas–Fermi equation. J. Comput. Appl. Math. 237(1), 244–252 (2013)

  17. 17.

    V. Marinca, R.D. Ene, Analytical approximate solutions to the Thomas–Fermi equation. Open Phys. 12(7), 503–510 (2014)

  18. 18.

    J.-H. He, Variational approach to the Thomas–Fermi equation. Appl. Math. Comput. 143, 533–535 (2003)

  19. 19.

    N.A. Gasilov, A.G. Fatullayev, Ş.E. Amrahov, Solution method for a non-homogeneous fuzzy linear system of differential equations. Appl. Soft Comput. 70, 225–237 (2018)

  20. 20.

    M.A.Z. Raja, M. Umar, Z. Sabir, J.A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 133(9), 364 (2018)

  21. 21.

    Z. Sabir et al., Neuro-heuristics for nonlinear singular Thomas–Fermi systems. Appl. Soft Comput. 65, 152–169 (2018)

  22. 22.

    I. Ahmad et al., Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev́e equation. Neural Comput. Appl. 31(1), 101–115 (2019)

  23. 23.

    A. Mehmood et al., Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl. Soft Comput. 79, 139–162 (2019)

  24. 24.

    M.A.Z. Raja, Z. Shah, M.A. Manzar, I. Ahmad, M. Awais, D. Baleanu, A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. Eur. Phys. J. Plus 133(7), 254 (2018)

  25. 25.

    I. Ahmad et al., Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur. Phys. J. Plus 133(5), 184 (2018)

  26. 26.

    I. Ahmad et al., Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput. Appl. 28(1), 929–944 (2017)

  27. 27.

    A. Mehmood et al., Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

  28. 28.

    I. Ahmad et al., Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 5(1), 1866 (2016)

  29. 29.

    M.A.Z. Raja, A. Zameer, A.U. Khan, A.M. Wazwaz, A new numerical approach to solve Thomas–Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus 5(1), 1400 (2016)

  30. 30.

    M.A.Z. Raja, M.A. Manzar, F.H. Shah, F.H. Shah, Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models. Appl. Soft Comput. 62, 359–372 (2018)

  31. 31.

    A. Mehmood et al., Intelligent computing to analyze the dynamics of magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput. 67, 8–28 (2018)

  32. 32.

    J.A. Khan et al., Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connect. Sci. 27(4), 377–396 (2015)

  33. 33.

    M.A.Z. Raja, T. Ahmed, S.M. Shah, Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. J. Taiwan Inst. Chem. Eng. 80, 935–953 (2017)

  34. 34.

    M.A.Z. Raja, F.H. Shah, M.I. Syam, Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput. Appl. 30(12), 3651–3675 (2018)

  35. 35.

    M.A.Z. Raja, F.H. Shah, A.A. Khan, N.A. Khan, Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. J. Taiwan Inst. Chem. Eng. 60, 59–75 (2016)

  36. 36.

    M.A.Z. Raja, A. Mehmood, A. ur Rehman, A. Khan, A. Zameer, Bio-inspired computational heuristics for Sisko fluid flow and heat transfer models. Appl. Soft Comput. 71, 622–648 (2018)

  37. 37.

    A. Munir et al., Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid. Neural Comput. Appl. 31(3), 751–775 (2019)

  38. 38.

    W.U. Khan et al., A novel application of fireworks heuristic paradigms for reliable treatment of nonlinear active noise control. Appl. Acoust. 146, 246–260 (2019)

  39. 39.

    A. Mehmood et al., Parameter estimation for Hammerstein control autoregressive systems using differential evolution. SIViP 12(8), 1603–1610 (2018)

  40. 40.

    A. Zameer et al., Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134, 361–372 (2017)

  41. 41.

    M.A.Z. Raja, A. Zameer, A.K. Kiani, A. Shehzad, M.A.R. Khan, Nature-inspired computational intelligence integration with Nelder-Mead method to solve nonlinear benchmark models. Neural Comput. Appl. 29(4), 1169–1193 (2018)

  42. 42.

    A. Ara et al., Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling. Adv. Differ. Equ. 2018(1), 8 (2018)

  43. 43.

    C.J. Zúñiga-Aguilar, A. Coronel-Escamilla, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J. Plus 133(2), 75 (2018)

  44. 44.

    A. Jafarian, S.M. Nia, A.K. Golmankhaneh, D. Baleanu, On artificial neural networks approach with new cost functions. Appl. Math. Comput. 339, 546–555 (2018)

  45. 45.

    M.A.Z. Raja, R. Samar, M.A. Manzar, S.M. Shah, Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley-Torvik equation. Math. Comput. Simul. 132, 139–158 (2017)

  46. 46.

    S. Lodhi et al., Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl. 31(1), 359–378 (2017)

  47. 47.

    S. Esposito, Majorana solution of the Thomas–Fermi equation. Am. J. Phys. 70(8), 852–856 (2002)

  48. 48.

    S. Esposito, Majorana transformation for differential equations. Int. J. Theor. Phys. 41(12), 2417–2426 (2002)

  49. 49.

    E. Di Grezia, S. Esposito, Fermi, Majorana and the statistical model of atoms. Found. Phys. 34(9), 1431–1450 (2004)

  50. 50.

    X. Zhang, J.P. Boyd, Revisiting the Thomas–Fermi equation: accelerating rational Chebyshev series through coordinate transformations. Appl. Numer. Math. 135, 186–205 (2019)

  51. 51.

    S.K. Roy, S. Mukhopadhyay, J. Lahiri, D.N. Basu, Relativistic Thomas–Fermi equation of state for magnetized white dwarfs. Phys. Rev. D 100(6), 063008 (2019)

  52. 52.

    K. Parand, K. Rabiei, M. Delkhosh, An efficient numerical method for solving nonlinear Thomas–Fermi equation. Acta Univ. Sapient. Math. 10(1), 134–151 (2018)

  53. 53.

    S.V. Pikulin, The Thomas–Fermi problem and solutions of the Emden-Fowler equation. Comput. Math. Math. Phys. 59(8), 1292–1313 (2019)

  54. 54.

    W. Robin, Another rational analytical approximation to the Thomas–Fermi equation. J. Innovat. Technol. Educ 5(1), 7–13 (2018)

  55. 55.

    K. Parand, A. Ghaderi, M. Delkhosh, H. Yousefi. A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions. arXiv:1606.07615 (2016)

  56. 56.

    K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, A novel numerical technique to obtain an accurate solution to the Thomas–Fermi equation. Eur. Phys. J. Plus 131(7), 228 (2016)

  57. 57.

    K. Parand, P. Mazaheri, H. Yousefi, M. Delkhosh, Fractional order of rational Jacobi functions for solving the non-linear singular Thomas–Fermi equation. Eur. Phys. J. Plus 132(2), 77 (2017)

  58. 58.

    S. Yaghoobi, B.P. Moghaddam, K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. 87(2), 815–826 (2017)

  59. 59.

    S. Bouhiri, A. Lamnii, M. Lamnii, Cubic quasi-interpolation spline collocation method for solving convection–diffusion equations. Math. Comput. Simul. 164, 33–45 (2018)

  60. 60.

    A. Lamnii, M. Lamnii, H. Mraoui, Cubic spline quasi-interpolants on Powell–Sabin partitions. BIT Numer. Math. 54(4), 1099–1118 (2014)

  61. 61.

    L.A. Zadeh, Soft computing and fuzzy logic. IEEE Softw. 11, 48–56 (1994)

  62. 62.

    J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (MIT Press, New York, 1992)

  63. 63.

    J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

  64. 64.

    Y. Hu, K. Liu, X. Zhang, L. Su, E.W.T. Ngai, M. Liu, Application of evolutionary computation for rule discovery in stock algorithmic trading: a literature review. Appl. Soft Comput. 36, 534–551 (2015)

  65. 65.

    C. Pizzuti, Evolutionary computation for community detection in networks: a review. IEEE Trans. Evol. Comput. 22(3), 464–483 (2018)

  66. 66.

    R.S. Parpinelli, G.F. Plichoski, R.S. Da Silva, P.H. Narloch, A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms. Int. J. Bio-Inspir. Comput 13, 1–20 (2019)

  67. 67.

    R. M’Hallah, S. Aboukhamseen, Cross-calibration of categorical variables: an evaluation of the genetic algorithm approach. Appl. Soft Comput. 74, 154–166 (2019)

  68. 68.

    D. Devaraj, R.N. Banu, Genetic algorithm-based optimisation of load-balanced routing for AMI with wireless mesh networks. Appl. Soft Comput. 74, 122–132 (2019)

  69. 69.

    R. Khanduzi, A.K. Sangaiah, A fast genetic algorithm for a critical protection problem in biomedical supply chain networks. Appl. Soft Comput. 75, 162–179 (2019)

  70. 70.

    G. Shao, Y. Shangguan, J. Tao, J. Zheng, T. Liu, Y. Wen, An improved genetic algorithm for structural optimization of Au–Ag bimetallic nanoparticles. Appl. Soft Comput. 73, 39–49 (2018)

  71. 71.

    N. Lebaal, M. Nouari, A. Ginting, A new optimization approach based on Kriging interpolation and sequential quadratic programming algorithm for end milling refractory titanium alloys. Appl. Soft Comput. 11(8), 5110–5119 (2011)

  72. 72.

    W.U. Khan et al., Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems. Appl. Soft Comput. 73, 666–683 (2018)

  73. 73.

    M.A.Z. Raja, S. Abbas, M.I. Syam, A.M. Wazwaz, Design of neuro-evolutionary model for solving nonlinear singularly perturbed boundary value problems. Appl. Soft Comput. 62, 373–394 (2018)

  74. 74.

    M.A.Z. Raja, J.A. Khan, N.I. Chaudhary, E. Shivanian, Reliable numerical treatment of nonlinear singular Flierl-Petviashivili equations for unbounded domain using ANN, GAs, and SQP. Appl. Soft Comput. 38, 617–636 (2016)

  75. 75.

    A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation. Eur. Phys. J. Plus 133(2), 37 (2018)

  76. 76.

    M.H. Puckett, Y. Zhang, B. Lu, Y. Lu, H. Sun, C. Zheng, W. Wei, Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales. Eur. Phys. J. Plus 134(8), 377 (2019)

  77. 77.

    P. Bracken, Cartan frames and algebras with links to integrable systems differential equations and surfaces. J. Math. Phys. 59(2), 021504 (2018)

  78. 78.

    A. Başhan, Y. Uçar, N.M. Yağmurlu, A. Esen, A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation. Eur. Phys. J. Plus 133(1), 12 (2018)

Download references

Author information

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.u.I., Faisal, F., Shoaib, M. et al. A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines. Eur. Phys. J. Plus 135, 55 (2020) doi:10.1140/epjp/s13360-019-00066-3

Download citation