Design and preparation of the composite film of SiO2 inlaying RGO and its enhanced electro-wetting performance

  • Jian WangEmail author
  • Yangyang Yin
  • Jianwen Zhang
  • Shu Liu
  • Yan Li
  • Chengwei Wang
Regular Article


The SiO2 composite film embedded with good conductor reduced graphene oxide (RGO) is designed based on the space charge polarization induced by the electromagnetic induction, and subsequently prepared using a simple sol–gel and spin-coating method. On one hand, the embedded RGO particles in SiO2 coating form large amount of heterogeneous interfaces and supply amounts of free charges. When the voltage is applied, the free charges are immediately driven to be accumulated these heterogeneous interfaces by the electromagnetic induction. Then, the space charge polarization induced by the electromagnetic induction is produced and increases the dielectric constant of the film. Also, the electromagnetic induction ensures the fast response of the space charge polarization, and further decreases the relaxation time of EWOD response obviously. On the other hand, the embedment of good conductor of RGO particles also greatly decreases the effective thickness of the SiO2 film. All these results greatly increase the capacitance of dielectric layer and further enhance EWOD performance, which are verified by the measured and calculated capacitance of the RGO@SiO2 composite film.



The authors are grateful to the support of the National Natural Science Foundation of China (Grant No. 11464041, 11864035, 11474231).


  1. 1.
    J. Lee, Y. Park, S.K. Chung, Sensors Actuat. A Phys. 287, 177 (2019)CrossRefGoogle Scholar
  2. 2.
    M. Zhou, Q. Zhao, B. Tang, J. Groenewold, R.A. Hayes, G.F. Zhou, Displays 49, 26 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Wu, T. Xu, Y. Chen, Y. Yang, L.P. Xu, X. Zhang, S. Wang, Sensors Actuat. B Chem. 258, 715 (2018)CrossRefGoogle Scholar
  4. 4.
    A.G. Papathanasiou, Curr. Opin. Colloid In. 36, 70 (2018)CrossRefGoogle Scholar
  5. 5.
    X.M. Li, H.M. Tian, J.Y. Shao, Y.C. Ding, X.L. Chen, L. Wang, B.H. Lu, Adv. Funct. Mater. 26, 2994 (2016)CrossRefGoogle Scholar
  6. 6.
    J.T. Kedzierski, R. Batra, S. Berry, I. Guha, J. App. Phys. 114, 024901 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Shi, Y. Zhang, M.C. Liu, D.A.H. Hanaor, Y.X. Gan, Colloid Surface A 555, 365 (2018)CrossRefGoogle Scholar
  8. 8.
    H.X. Jin, J. Wang, Y.Y. Yin, Y.Y. An, X.Z. Wang, Y. Li, C.W. Wang, Y.D. Lv, Superlattice Microst. 110, 233 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang, Y. Yin, H. Jin, J. Zhang, Y. Li, C.W. Wang, M. Duan, J. Alloy. Compound. 776, 560 (2019)CrossRefGoogle Scholar
  10. 10.
    S. Razi, M. Mollabas, hiKhosro Madanipour. Eur. Phys. J. Plus 130, 247 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Barberoglou, V. Zorba, A. Pagozidis, C. Fotakis, E. Stratakis, Langmuir 26, 13007 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.Y. Lin, R.D. Evans, E. Welch, B.N. Hsu, A.C. Madison, R.B. Fair, Sensor Actuat. B-Chem. 150, 465 (2010)CrossRefGoogle Scholar
  13. 13.
    J.H. Chang, D.Y. Choi, S. Han, J.J. Pak, Microfluid. Nanofluid. 8, 269 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Moon, S.K. Cho, R.L. Garrell, C.-J.C. Kim, J. Appl. Phys. 92, 4080 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    V. Narasimhan, S.Y. Park, Langmuir 31, 8512 (2015)CrossRefGoogle Scholar
  16. 16.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  17. 17.
    B. Sravani, H. Maseed, Y. Chandrasekhar, Y.V.M. Reddy, V.V.S.S. Srikanth, G. Madhavi, L. SubramanyamSarma, Nanoscale 11, 13300 (2019)CrossRefGoogle Scholar
  18. 18.
    Y.V.M. Reddy, B. Sravani, H. Maseed, T. Łuczak, M. Osińska, L. SubramanyamSarma, V.V.S.S. Srikanth, G. Madhavi, New J. Chem. 42, 16891 (2018)CrossRefGoogle Scholar
  19. 19.
    B. Shapiro, H. Moon, R.L. Garrell, C.J. Kim, J. Appl. Phys. 93, 5794 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J. Wang, J. Zhang, Y. Yin, H. Jin, S. Liu, Y. Li, C.W. Wang, J. Alloy. Compound. 807, 151663 (2019)CrossRefGoogle Scholar
  21. 21.
    Y.N. Liu, Y.E. Liang, Y.J. Sheng, H.K. Tsao, Langmuir 31, 3840 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations