Generalized ADT charges and asymptotic symmetry algebra

  • 7 Accesses


Using the expressions for generalized ADT current and potential in a self consistent manner, we derive the asymptotic symmetry algebra on \(\mathrm{{AdS}}_3\) and the near horizon extremal BTZ spacetimes. The structure of symmetry algebra among the conserved charges for asymptotic killing vectors matches exactly with the known results thus establishing the algebraic equivalence between the well known existing formalisms for obtaining the conserved charges and the generalized ADT charges.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data/information presented in this manuscript are available upon request by contacting with corresponding author.]


  1. 1.

    From now onwards we drop the subscript ADT from the expressions for ADT charges.

  2. 2.

    Here we have assumed the infinitesimal the integrability of the surfaces charge \(\delta Q_{m}\).


  1. 1.

    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

  2. 2.

    J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)

  3. 3.

    A. Strominger, Black hole entropy from near-horizon microstates. JHEP 9802, 009 (1998). arXiv:hep-th/9712251

  4. 4.

    M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D 80, 124008 (2009). arXiv:0809.4266 [hep-th]

  5. 5.

    G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review. Living Rev. Rel. 15, 11 (2012). arXiv:1203.3561 [hep-th]

  6. 6.

    R.L. Arnowitt, S. Deser, C.W. Misner, Gen. Rel. Grav. 40, 1997 (2008). arXiv:gr-qc/0405109

  7. 7.

    L.F. Abbott, S. Deser, Stability of gravity with a cosmological constant. Nucl. Phys. B 195, 76 (1982)

  8. 8.

    S. Deser, B. Tekin, Energy in generic higher curvature gravity theories. Phys. Rev. D 67, 084009 (2003). arXiv:hep-th/0212292

  9. 9.

    J.D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. Lett. D 47, 1407 (1993). arXiv:hep-th/9209012

  10. 10.

    R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D 48, 3427 (1993). arXiv:gr-qc/9307038

  11. 11.

    T. Jacobson, G. Kang, R.C. Myers, On‘black hole entropy. Phys. Rev. D 49, 6587 (1994). arXiv:gr-qc/9312023

  12. 12.

    V. Iyer, R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846 (1994). arXiv:gr-qc/9403028

  13. 13.

    R.M. Wald, A. Zopus, General definition of ‘conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000). arXiv:gr-qc/9911095

  14. 14.

    I. Papadimitriou, K. Skenderis, JHEP 0508, 004 (2005). arXiv:hep-th/0505190

  15. 15.

    G. Barnich, F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633, 3 (2002). arXiv:hep-th/0111246

  16. 16.

    G. Barnich, G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, arXiv:0708.2378 [gr-qc]

  17. 17.

    G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions (2019). arXiv:0708.3153 [hep-th]

  18. 18.

    G. Compere, A. Fiorucci, Advanced lectures on general relativity. Lect. Notes Phys. 952, pp. (2019). arXiv:1801.07064 [hep-th]

  19. 19.

    W. Kim, S. Kulkarni, S.H. Yi, Quasilocal Conserved Charges in a Covariant Theory of Gravity. Phys. Rev. Lett. 111(8), 081101 (2013). arXiv:1306.2138 [hep-th] [Erratum: Phys. Rev. Lett. 112, no. 7, 079902 (2014)]

  20. 20.

    W. Kim, S. Kulkarni, S.H. Yi, Quasilocal conserved charges in the presence of a gravitational Chern-Simons term. Phys. Rev. D 88(12), 124004 (2013). arXiv:1310.1739 [hep-th]

  21. 21.

    S. Hyun, S.A. Park, S.H. Yi, Quasi-local charges and asymptotic symmetry generators. JHEP 1406, 151 (2014). arXiv:1403.2196 [hep-th]

  22. 22.

    S. Hyun, J. Jeong, S.A. Park, S.H. Yi, Quasilocal conserved charges and holography. Phys. Rev. D 90(10), 104016 (2014). arXiv:1406.7101 [hep-th]

  23. 23.

    K. Bhattacharya, B.R. Majhi, Abbott–Deser–Tekin like conserved quantities in Lanczos–Lovelock gravity: beyond Killing diffeomorphisms. Class. Quant. Grav. 36, 065009 (2019). arXiv:1806.05519 [gr-qc]

  24. 24.

    G. Compere, W. Song, A. Strominger, New boundary conditions for AdS3. JHEP 1305, 152 (2013). arXiv:1303.2662 [hep-th]

  25. 25.

    S.G. Avery, R.R. Poojary, N.V. Suryanarayana, An sl(2,\({\mathbb{R}}\)) current algebra from \(AdS_3\) gravity. JHEP 1401, 144 (2014). arXiv:1304.4252 [hep-th]

  26. 26.

    D. Grumiller, M. Riegler, Most general \(\text{ AdS }_{{3}}\) boundary conditions. JHEP 1610, 023 (2016). arXiv:1608.01308 [hep-th]

  27. 27.

    J. Schmidt, J. Bicak, J. Math. Phys. 59(4), 042501 (2018). arXiv:1804.02298 [gr-qc]

  28. 28.

    M.R. Setare, H. Adami, Phys. Rev. D 96(10), 104019 (2017). arXiv:1708.08767 [hep-th]

  29. 29.

    M.R. Setare, H. Adami, Class. Quant. Grav. 34(10), 105008 (2017). arXiv:1609.06168 [gr-qc]

  30. 30.

    M.R. Setare, H. Adami, Phys. Lett. B 744, 280 (2015). arXiv:1504.01660 [gr-qc]

  31. 31.

    H. Adami, M.R. Setare, Eur. Phys. J. C 76(4), 187 (2016). arXiv:1511.00527 [gr-qc]

  32. 32.

    S. Hyun, J. Jeong, S.A. Park, S.H. Yi, Phys. Rev. D 91, 064052 (2015). arXiv:1410.1312 [hep-th]

  33. 33.

    S. Hyun, J. Jeong, S.A. Park, S.H. Yi, JHEP 1704, 048 (2017). arXiv:1702.06629 [hep-th]

  34. 34.

    H. Adami, M. R. Setare, T. C. Sisman, B. Tekin, Conserved charges in extended theories of gravity (2017). arXiv:1710.07252 [hep-th]

  35. 35.

    V. Balasubramanian, P. Kraus, Commun. Math. Phys. 208, 413 (1999). arXiv:hep-th/9902121

  36. 36.

    G. Compère, P. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of \(\text{ AdS }_{{3}}\) gravity: holographic vs boundary gravitons. JHEP 1601, 080 (2016). arXiv:1511.06079 [hep-th]

  37. 37.

    T. Azeyanagi, N. Ogawa, S. Terashima, The Kerr/CFT correspondence and string theory. Phys. Rev. D 79, 106009 (2009). arXiv:0812.4883 [hep-th]

  38. 38.

    T. Azeyanagi, N. Ogawa, S. Terashima, On non-chiral extension of Kerr/CFT. JHEP 1106, 081 (2011). arXiv:1102.3423 [hep-th]

Download references


I would like to thank Dileep Jatkar and Sang-Heon Yi for the fruitful discussions and correspondence. This work is supported by INSPIRE faculty scheme (research Grant No. IFA-13 PH-56) by Department of Science and Technology (DST), Govt. of India and UGC-Faculty Recharge Programme Govt. of India.

Author information

Correspondence to Shailesh Kulkarni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S. Generalized ADT charges and asymptotic symmetry algebra. Eur. Phys. J. Plus 135, 67 (2020).

Download citation