Advertisement

Polarizability of germanium quantum dots with spatially separated electrons and holes

  • 15 Accesses

Abstract

In the framework of dipole approximation, it is shown that the quantities (the oscillator strengths of transitions, the dipole moments for transitions, and the polarizability) describing optical absorption on surface exciton states with spatially separated electrons and holes (the hole moves in the germanium quantum dot and the electron is localized over the spherical interface of the silicon quantum dot matrix) assume giant values considerably exceeding the typical values of the corresponding quantities for semiconductors under the action of low-intensity light.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. 1.

    A.I. Yakimov, A.V. Dvurechensky, A.I. Nikiforov, JETP Lett. 73, 529 (2001)

  2. 2.

    A.I. Yakimov, A.V. Dvurechensky, A.I. Nikiforov, JETP Lett. 119, 574 (2001)

  3. 3.

    J.V. Smagina, A.V. Dvurechenskiy, V.A. Seleznev, Semiconductors 49, 749 (2015)

  4. 4.

    S.I. Pokutnyi, Low Temp. Phys. 42, 1151 (2016)

  5. 5.

    S.I. Pokutnyi, Low Temp. Phys. 44, 819 (2018)

  6. 6.

    Z.I. Alferov, Nobel lecture (December 8, 2000). Usp. Fiz. Nauk 172, 1068 (2002)

  7. 7.

    S.I. Pokutnyi, Semiconductors 47, 791 (2013)

  8. 8.

    S.I. Pokutnyi, YuN Culchin, V.P. Dzyuba, Semiconductors 49, 1311 (2015)

  9. 9.

    W.H. Chang, A.T. Chou, W.Y. Chen, Appl. Phys. Lett. 83, 2958 (2003)

  10. 10.

    M. Elcurdi, P. Boucaud, S. Sauvage, Phys. E 16, 523 (2003)

  11. 11.

    A. Elfving, G.V. Hansson, W.X. Ni, Phys. E 16, 528 (2003)

  12. 12.

    A.V. Dvurechensky, A.I. Yakimov, V.V. Kirienko, Defect Diffus. Forum 386, 68 (2018)

  13. 13.

    N. Pakhanov, O.P. Pchelyakov, A.I. Yakimov, Optoelectron. Instrum. Data Process. 53, 190 (2017)

  14. 14.

    A.W. Achtstein, A.V. Prudnikau, M.V. Ermolenko, L.I. Gurinovich, S.V. Gaponenko, ACS Nano 8, 7678 (2014)

  15. 15.

    S.V. Gaponenko, H.V. Demir, C. Seassal, Optics Express. 24, A 430 (2016)

  16. 16.

    S.I. Pokutnyi, J. Nanophotonics 12, 012506 (2018)

  17. 17.

    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Electrodynamics of Continuous Media, vol. 8 (Pergamon Press, New York, 1984)

  18. 18.

    E.V. Calman, M.M. Fogler, L.V. Butov, S. Hu, A. Mishchenko, A.K. Geim, Nat. Commun. 9, 1895 (2018)

  19. 19.

    A.V. Gaisler, A.S. Yaroshevich, I.A. Derebezov, A.K. Kalagin, A.K. Bakarov, A.I. Toropov, A.L. Aseev, JETP Lett. 97, 274 (2013)

  20. 20.

    M. Cardona, G. Guntherodt, Light Scattering in Solids: Recent Results (Springer, Berlin, 1982)

Download references

Author information

Correspondence to Sergey I. Pokutnyi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pokutnyi, S.I. Polarizability of germanium quantum dots with spatially separated electrons and holes. Eur. Phys. J. Plus 135, 74 (2020). https://doi.org/10.1140/epjp/s13360-019-00050-x

Download citation