Advertisement

Thermal behaviors of exotic \(Z_{c}\) (3900) state in tetraquark approach

  • 5 Accesses

Abstract

The discovery of the charged \(Z_{c}\)(3900) exotic resonance with the quantum numbers \(J^{P}\)= \(1^{+}\) has crucial consequences for comprehending the nature of multi-quark hadrons. In this work, the meson-current coupling constant and mass of \(Z_{c}\) state are calculated using the Thermal QCD Sum Rules method. We suppose that the positively charged state \(Z_{c}\) has a quark content \({\bar{c}}cu{\bar{d}}\) and use tetraquark current with the corresponding quantum numbers. We evaluate the two-point correlation function taking into account the non-perturbative condensates up to six-dimension. We found the hot medium contributions to hadronic parameters of the \(Z_{c}\) state and exhibit that its meson-current coupling constant and mass are unsusceptible to the change of temperature in low temperature region, but these parameters significantly change in the vicinity of phase transition region. At critical temperature, the meson current-coupling constant reaches approximately to 10% of its vacuum value, while the mass decreases about 28%.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    S.K. Choi et al., Belle Collaboration. Phys. Rev. Lett. 91, 262001 (2003)

  2. 2.

    D. Acosta et al., CDF Collaboration. Phys. Rev. Lett. 93, 072001 (2004)

  3. 3.

    V.M. Abazov et al., D0 Collaboration. Phys. Rev. Lett. 93, 162002 (2004)

  4. 4.

    F. Brazzi, B. Grinstein, F. Piccinini, A.D. Polosa, C. Sabelli, Phys. Rev. D 84, 014003 (2011)

  5. 5.

    M. Ablikim et al., BESIII Collaboration. Phys. Rev. Lett. 110, 252001 (2013)

  6. 6.

    Z.Q. Liu et al., Belle Collaboration. Phys. Rev. Lett. 110, 252002 (2013)

  7. 7.

    T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth, Phys. Lett. B 727, 366 (2013)

  8. 8.

    M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 119(7), 072001 (2017)

  9. 9.

    E. Braaten, Phys. Rev. Lett. 111, 162003 (2013)

  10. 10.

    M. Karliner, S. Nussinov, JHEP 1307, 153 (2013)

  11. 11.

    L. Maiani, V. Riquer, R. Faccini, F. Piccinini, A. Pilloni, A.D. Polosa, Phys. Rev. D 87(11), 111102 (2013)

  12. 12.

    J.M. Dias, F.S. Navarra, M. Nielsen, C.M. Zanetti, Phys. Rev. D 88(1), 016004 (2013)

  13. 13.

    C.F. Qiao, L. Tang, Eur. Phys. J. C 74(10), 3122 (2014)

  14. 14.

    Z.G. Wang, T. Huang, Phys. Rev. D 89(5), 054019 (2014)

  15. 15.

    S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93(7), 074002 (2016)

  16. 16.

    S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96(3), 034026 (2017)

  17. 17.

    İ. Baldan Işık, H. Sundu Pamuk, E. V. Veliev, in Turk. Phys. Soc. 34th Int. Phys. Congress, Proc. Book (2018), p. 352

  18. 18.

    E. Veli Veliev, S. Günaydn and H. Sundu, Eur. Phys. J. Plus 133(4), 139 (2018)

  19. 19.

    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

  20. 20.

    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

  21. 21.

    A.I. Bochkarev, M.E. Shaposhnikov, Nucl. Phys. B 268, 220 (1986)

  22. 22.

    S. Mallik, Phys. Lett. B 416, 373 (1998). hep-ph/9710556

  23. 23.

    C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

  24. 24.

    K. Azizi, H. Sundu, A. Türkan, E.V. Veliev, J. Phys. G 41, 035003 (2014)

  25. 25.

    K. Azizi, G. Bozkır, Eur. Phys. J. C 76(10), 521 (2016)

  26. 26.

    A. Ayala, A. Bashir, C.A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, Phys. Rev. D 84, 056004 (2011)

  27. 27.

    M. Cheng et al., Phys. Rev. D 81, 054504 (2010)

  28. 28.

    M. Cheng et al., Phys. Rev. D 77, 014511 (2008)

  29. 29.

    A. Ayala, C.A. Dominguez, M. Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012)

Download references

Acknowledgements

Authors thank Kocaeli University for the partial financial support through Grant no. BAP 2018/070.

Author information

Correspondence to Hayriye Sundu.

Appendix A: The two-point thermal spectral density

Appendix A: The two-point thermal spectral density

The results of the spectral densities obtained in the calculations are presented in this section. Collecting them as perturbative and nonperturbative parts, we obtain that,

$$\begin{aligned} \rho ^{\mathrm {QCD}}(s,T)=\rho ^{\mathrm {pert.}}(s)+\sum _{k=3}^{6}\rho _{k}(s,T), \end{aligned}$$
(A.1)

where \(\rho _{k}(s,T)\) denote the nonperturbative contributions:

$$\begin{aligned} \rho _\mathrm{{pert.}}(s)= & {} \frac{1}{3072\pi ^6}\int _{0}^{1}\nonumber \\&\mathrm{{d}}z\int _{0}^{1-z}\mathrm{{d}}w\frac{wz}{ht^8} \Big \lbrace \left( hswz-m_c^2t(w+z)\right) ^2 (-7hswz+m_c^2t(w+z)) \nonumber \\&\times \,(-5hswz+3m_c^2t(w+z))\Big \rbrace \theta [L], \end{aligned}$$
(A.2)
$$\begin{aligned} \rho _{3}(s,T)= & {} \frac{1}{192\pi ^4}\int _{0}^{1}\mathrm{{d}}z\int _{0}^{1-z} \frac{{\text {d}}w}{t^6}\Big \lbrace \langle {\bar{q}}q\rangle \Big [21h^2m_cs^2tw^2z^2(w+z)\nonumber \\&-\,30hm_c^3st^2wz(w+z)^2+9m_c^5t^3(w+z)^3\Big ]\nonumber \\&+ \,{\langle \Theta ^f_{00}\rangle }\Big [-240h^3s^2w^3z^3\nonumber \\&+\,208h^2m_c^2stw^2z^2(w+z)-16m_c^4t^2(w+z)^2\Big ]\Big \rbrace \theta [L], \end{aligned}$$
(A.3)
$$\begin{aligned} \rho _{4}(s,T)= & {} -\frac{1}{18432\pi ^{6}} \int _{0}^{1}\mathrm{{d}}z\int _{0}^{1-z}\frac{{\text {d}}w}{h^2t^6} \Big \langle \frac{g^2G^2}{\pi }\Big \rangle \Big \lbrace -60h^4s^2w^3z^3(w+z)\nonumber \\&+\,m_c^4t^2(w+z)(12(-1+w)^3 \nonumber \\&\times \,w^2(-1+2w)+3(-1+w)w(-8+w(46\nonumber \\&+\,w(-75+(37+2\pi )w)))z+2(6+w(-81 \nonumber \\&+\, w(258+w(-299+(116+3\pi )w))))z^2\nonumber \\&+\,(-1+w)(60+w(-303+295w))z^3+2(54-3 \nonumber \\&\times \, (56+\pi )w+(116+3\pi )w^2)z^4\nonumber \\&+\,3(-28+(37+2\pi )w)z^5+24z^6) -hm_c^2stwz(12(-1+w)^3 \nonumber \\&+\,w^2(-1+2w)+(-1+w)w(-24+w(138+w(-177\nonumber \\&+\,(63+16\pi )w)))z+2(6+w(-81\nonumber \\&\times \, w((210+w(-155+4(5+2\pi )w))))z^2\nonumber \\&+\,(-60+w(315+w(-310+7w)))z^3+4(27+2(5\nonumber \\&\times \, (-6+w)+2\pi (-1+w))w)z^4\nonumber \\&+\,(-84+(63+16\pi )w)z^5+24z^6) \Big \rbrace \theta [L]\nonumber \\&+\, \frac{1}{4608}\int _{0}^{1}\mathrm{{d}}z\int _{0}^{1-z}\frac{{\text {d}}w}{h^2t^6}\langle \Theta ^f_{00}\rangle \Big \lbrace \Big [-30h^4s^2 w^3z^3(w+z)\nonumber \\&+\,hm_c^2twz(4swz(3(-1+w)^2w \nonumber \\&\times \,(-2+9w)+2(-1+w)(3+w(-33+50w))z\nonumber \\&+\,(39+w(-166+145w))z^2+20(-3+5w)z^3 \nonumber \\&+\, 27z^4) +3s(4(-1+w)^3w^2(-1+2w)\nonumber \\&+\,(-1+w)^2w(8+w(-42+23w))z+2(-1+w)(-2+w\nonumber \\&\times \,(27+w(-51+8w)))z^2\nonumber \\&+\,(-20+(-1+w)w(-115+3w))z^3\nonumber \\&+\,4(9-22w+4w^2)z^4+(-28 \nonumber \\&+\, 23w)z^5+8z^6))-3m_c^4t^2 \Big ((8w^7\nonumber \\&+\,4(-1+z)^3z^3(-1+2z)+7w^6(-4+7z)\nonumber \\&+\,w(-1+z)^2z^2(12\nonumber \\&\times \, (z (-54+49z))+ w^5(36+z(-152+129z))\nonumber \\&+\,w^2(-1+z)^2z(12+z(-92+129z))+ w^4\nonumber \\&\times \,(-20 z(169+z(-350+199z)))\nonumber \\&+\,w^3(4+z(-78+z(325+z(-452+199z))))\Big )\Big ] \Big \rbrace \theta [L], \end{aligned}$$
(A.4)
$$\begin{aligned} \rho _{5}(s,T)= & {} -\frac{m_cm_0^2\langle {\overline{q}}q\rangle }{128\pi ^4} \int _{0}^{1}\mathrm{{d}}z\nonumber \\&\int _{0}^{1-z}\mathrm{{d}}w\frac{wzh(w+z) }{t^5} (w+z) \Big [20hswz-9m_c^2(w^3+2w \nonumber \\&\times \, (-1+z)z+(-1+z)z^2+w^2(-1+2z)) \Big ] \theta [L], \end{aligned}$$
(A.5)
$$\begin{aligned} \rho _{6}(s,T)= & {} \frac{1}{108\pi ^2}\int _{0}^{1}\mathrm{{d}}z\int _{0}^{1-z}\mathrm{{d}}w\Big [ 9m_c^2\langle {\overline{q}}q\rangle ^2-\nonumber \\&3m_c\langle {\overline{q}}q\rangle \langle \Theta ^f_{00}\rangle +20z \langle \Theta ^f_{00}\rangle ^2 \Big ]\theta [L]. \end{aligned}$$
(A.6)

Here,

$$\begin{aligned} L= & {} \frac{1}{t^2} \Big [\Big (m_c^2(w^3+w^2(2z-1)+(z^2+2wz)(z-1))-hswz \Big ) (w-1) \Big ], \nonumber \\ t= & {} w^2+(z-1)(w+z),\ h=w+z-1 \end{aligned}$$
(A.7)

and \(\theta \) is step function.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Işık, İ.B., Sundu, H. & Veliev, E.V. Thermal behaviors of exotic \(Z_{c}\) (3900) state in tetraquark approach. Eur. Phys. J. Plus 135, 48 (2020) doi:10.1140/epjp/s13360-019-00026-x

Download citation