Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Personalized mathematical model of human arm arteries with inflow boundary condition

  • 33 Accesses

Abstract

Mathematical modeling is a powerful tool to study the overall behavior of the cardiovascular system (CVS). To build a personalized or predictive mathematical model of the human CVS, it is essential to validate the model outputs with some empirical results (measurements). In this paper, we developed a 0D model of the human arm arteries for inflow boundary condition in complement with the data obtained from a healthy person. Further, the model outputs are validated/compared with the non-invasive flow measurements taken at ulnar artery using Doppler ultrasound (Toshiba’s Aplio\(^{\text {TM}}\) 500). We observed a good agreement between model simulations and flow measurements taken at ulnar artery of a healthy person \((r=0.8264)\).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    B.H. Thacker, S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, E.A. Rodriguez. Concepts of model verification and validation. Report No. LA-14167-MS, Los Alamos National Laboratory (2004)

  2. 2.

    Z. Duanmu, M. Yin, X. Fan, X. Yang, X. Luo, Patient-specific lumped-parameter model of coronary circulation. Sci. Rep. 8, 874 (2018)

  3. 3.

    A. Tache, D. Zamfir, Patient Specific Modeling of the Cardiovascular System, in 2nd International Conference on Systems and Computer Science (ICSCS) Villeneuve d’Ascq, France, August 26–27 (2013)

  4. 4.

    W. Huberts, S.G.H. Heinen, N. Zonnebeld, D.A.F. van den Heuvel, J.-P.P.M. de Vries, J.H.M. Tordoir, D.R. Hose, T. Delhaas, F.N. van de Vosse, What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. J. Comput. Sci. 24, 68–84 (2018)

  5. 5.

    L. Ignacio et al., HeMoLab hemodynamics modelling laboratory: an application for modelling the human cardiovascular system. Comput. Biol. Med. 42(10), 993–1004 (2012)

  6. 6.

    K. Passera, S. Manini, L. Antiga, A. Remuzzi, Patient-specific model of arterial circulation for surgical planning of vascular access. J. Vasc. Access 14(2), 180–192 (2013)

  7. 7.

    H.J. Kim, I.E. Vignon-Clementel, J.S. Coogan, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10), 3195–3209 (2010)

  8. 8.

    S. Malatos, A. Raptis, M. Xenos, Advances in low-dimensional mathematical modeling of the human cardiovascular system. J. Hypertens. Manag. 2(2), 2–17 (2016)

  9. 9.

    A.G. Richard, P. Pathmanathan, Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J. Cardiovasc. Transl. Res. 11, 80–88 (2018)

  10. 10.

    K. Gillette, A. Prassl, J. Bayer, E.J. Vigmond, A. Neic, G. Plank, Patient-specific parameterization of a left-ventricular model of cardiac electrophysiology using electrocardiographic recordings. Comput. Cardiol. 44, 1–4 (2017)

  11. 11.

    W.B. Tay, Y.H. Tseng, L.Y. Lin, W.Y. Tseng, Towards patient-specific cardiovascular modeling system using the immersed boundary technique. Biomed. Eng. Online 10, 52 (2011)

  12. 12.

    R.L. Watrous, A computational model of cardiovascular physiology and heart sound generation, in Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Minneapolis, MN, USA, pp 3105–3110 (2009). https://doi.org/10.1109/IEMBS.2009.5332548

  13. 13.

    R. Gul, Mathematical modeling and sensitivity analysis of a lumped-parameter model of the human cardiovascular system. Ph.D. thesis, Freie Universitat Berlin, Germany (2016)

  14. 14.

    A.P. Avolio, Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18, 709–718 (1980)

  15. 15.

    N. Westerhof, F. Bosman, C.J. De Vries, A. Noordergraaf, Analog studies of the human systemic arterial tree. J. Biomech. 2, 121–143 (1969)

  16. 16.

    grabit [Computer software]. (2016), https://www.mathworks.com/matlabcentral/fileexchange/7173-grabit

  17. 17.

    A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis (Wiley, New York, 2008)

  18. 18.

    Z. Zi, Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5(6), 336–346 (2011)

  19. 19.

    I. Sobol, Sensitivity estimates for nonlinear mathematical models. Matematicheskoe Modelirovanie 2, 112118 (1990). (In Russian, translated in English)

  20. 20.

    R. Gul, S. Bernhard, Mathematical modeling and sensitivity analysis of arterial anastomosis in arm arteries. Appl. Math. Model. 40, 7724–7738 (2015)

  21. 21.

    R. Gul, S. Bernhard, Parametric uncertainty and global sensitivity analysis in a model of the carotid bifurcation: identification and ranking of most sensitive model parameters. Math. Biosci. 269, 104–116 (2015)

Download references

Acknowledgements

The authors would like to thank Dr. F. Z. Alvi and Dr. Abdullah Alvi from Mufti Clinic Abbottabad, Pakistan for collecting/providing measurements and valuable suggestions.

Author information

Correspondence to R. Gul.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Funding

All measurements/data collection costs are borne by Mufti Clinic, Abbottabad, Pakistan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gul, R., Shaheen, N. & Shahzad, A. Personalized mathematical model of human arm arteries with inflow boundary condition. Eur. Phys. J. Plus 135, 10 (2020). https://doi.org/10.1140/epjp/s13360-019-00024-z

Download citation