Advertisement

Growth and characterizations of tin telluride (SnTe) single crystals

  • Rohitkumar M. KannaujiyaEmail author
  • Ankurkumar J. KhimaniEmail author
  • Sunil H. Chaki
  • Sanjaysinh M. Chauhan
  • Anilkumar B. Hirpara
  • M. P. Deshpande
Regular Article
  • 16 Downloads

Abstract

In recent time, materials in two-dimensional (2D) forms have gained importance along with nano-forms both from the fundamental and the technological point of view. Amongst the vast compound semiconductors, tin telluride (SnTe) is a potential candidate to find interest in the 2D form. The single crystals in the 2D flake forms of SnTe are grown by vapour transport technique in direct mode within closed quartz ampoule geometry. The stoichiometry of as-grown crystals is confirmed by the energy-dispersive X-ray analysis, which showed that the as-grown SnTe single crystals to be near stoichiometric but slightly Te rich. The analysis by X-ray diffraction of as-grown SnTe single crystals confirmed the cubic structure having lattice parameters of a = b = c = 6.31 Å and α = β = γ = 90°. The surface study is done by electron microscopy in scanning mode which shows bunching of layers one over other, near flat surface, and flower-like pattern on the edges of the crystals. The spot pattern observed in electron diffraction from selected area confirms the single-crystalline nature of crystals. The Raman spectrum of SnTe single crystal showed sharp peak at 132 cm−1, attributed to transverse optical phonon vibration mode. The variation of d.c. electrical resistivity with temperature showed the SnTe single crystal to be metallic in nature and the value of bandgap is 0.19 eV. The thermal analysis of the as-grown SnTe single crystals is performed by recording the thermogravimetric, differential thermogravimetric, and differential thermal analysis curves. The kinetic parameters are derived by Kissinger method from the thermocurves data. The single crystals growth and varied characterization results on SnTe single crystals are thoroughly discussed.

References

  1. 1.
    P. Nan, R. Liu, Y. Chang, H. Wu, Y. Wang, R. Yu, J. Shen, W. Guo, B. Ge, Nanotechnology 29, 26LT01 (2018)CrossRefGoogle Scholar
  2. 2.
    A.J. Khimani, S.H. Chaki, M.P. Deshpande, J.P. Tailor, J. Cryst. Growth 507, 180 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    L. Xu, M. Yang, S.J. Wang, Y.P. Feng, Phys. Rev. B 95, 1 (2017)Google Scholar
  4. 4.
    K. Chang, T.P. Kaloni, H. Lin, A. Bedoya-Pinto, A.K. Pandeya, I. Kostanovskiy, K. Zhao, Y. Zhong, X. Hu, Q.K. Xue, X. Chen, S.H. Ji, S. Barraza-Lopez, S.S.P. Parkin, Adv. Mater. 1804428, 1 (2018)Google Scholar
  5. 5.
    A.J. Khimani, S.H. Chaki, M.P. Deshpande, S.M. Chauhan, J.P. Tailor, Mater. Lett. 236, 187 (2019)CrossRefGoogle Scholar
  6. 6.
    C.H. Lee, C.K. Yang, New J. Phys. 18, 1233022 (2016)Google Scholar
  7. 7.
    A. Shapiro, Y. Jang, F. Horani, Y. Kauffmann, E. Lifshitz, Chem. Mater. 30, 3141 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Yang, W. Yu, Z. Pan, Q. Yu, Q. Yin, L. Guo, Y. Zhao, T. Sun, Q. Bao, K. Zhang, Small 14, 1 (2018)Google Scholar
  9. 9.
    H. Zhang, B. Man, Q. Zhang, A.C.S. Appl, Mater. Interfaces 9, 14067 (2017)CrossRefGoogle Scholar
  10. 10.
    J.R. Burke, H.R. Riedl, Phys. Rev. 184, 830 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M.G. Kanatzidis, L.D. Zhao, Energy Environ. Sci. 8, 3298 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Baker, R. Kumar, C. Park, C. Kenney-Benson, A. Cornelius, N. Velisavljevic, ChemPhysChem 18, 3315 (2017)CrossRefGoogle Scholar
  13. 13.
    T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nat. Commun. 3, 1 (2012)CrossRefGoogle Scholar
  14. 14.
    A.L. Araújo, G.J. Ferreira, T.M. Schmidt, Sci. Rep. 8, 1 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    G.A.S. Ribeiro, L. Paulatto, R. Bianco, I. Errea, F. Mauri, M. Calandra, Phys. Rev. B 97, 014306 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Baughman, R.A. Lefever, Mater. Res. Bull. 4, 721 (1969)CrossRefGoogle Scholar
  17. 17.
    V.K. Maurya, S.P. Shruti, S. Patnaik, EPL 108, 37010 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Saghir, M.R. Lees, S.J. York, G. Balakrishnan, Cryst. Growth Des. 14, 2009 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Safdar, Q. Wang, M. Mirza, Z. Wang, K. Xu, J. He, Nano Lett. 13, 5344 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    P. Bauer, S. Gorsse, Phys. Status Solidi B 250, 1300 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Chaki, A. Agarwal, J. Cryst. Growth 308, 176 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Cui, G. Chen, J. Ren, M. Shao, Y. Xie, Y. Qian, J. Solid State Chem. 172, 17 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    L. Chen, W. Yu, Y. Li, Powder Technol. 191, 52 (2009)CrossRefGoogle Scholar
  24. 24.
    L.J. Brillson, E. Burstein, L. Muldawer, Phys. Rev. B 9, 1547 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    H. Wang, J. Hwang, C. Zhang, T. Wang, W. Su, H. Kim, J. Kim, J. Zhai, X. Wang, H. Park, W. Kim, C. Wang, J. Mater. Chem. A 5, 14165 (2017)CrossRefGoogle Scholar
  26. 26.
    D. Ibrahim, V. Ohorodniichuk, C. Candolfi, C. Semprimoschnig, A. Dauscher, B. Lenoir, ACS Omega 2, 7106 (2017)CrossRefGoogle Scholar
  27. 27.
    S.G. Patel, S.H. Chaki, A. Agarwal, Phys. Status Solidi 140, 207 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    H. Search, C. Journals, A. Contact, M. Iopscience, S.S. Phys, I.P. Address, J. Phys. C: Solid State Phys. 3619, 3619 (1986)Google Scholar
  29. 29.
    M. Salavati-niasari, M. Bazarganipour, F. Davar, A. Amini, Appl. Surf. Sci. 257, 781 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, J. Therm. Anal. Calorim. 120, 1261 (2015)CrossRefGoogle Scholar
  31. 31.
    J.P. Tailor, A.J. Khimani, S.H. Chaki, M.P. Deshpande, AIP Conf. Proc. 1953, 030197 (2018)CrossRefGoogle Scholar
  32. 32.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, T.J. Malek, J.P. Tailor, Int. J. Thermophys. 39, 1 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Rohitkumar M. Kannaujiya
    • 1
    Email author
  • Ankurkumar J. Khimani
    • 1
    • 2
    Email author
  • Sunil H. Chaki
    • 1
    • 3
  • Sanjaysinh M. Chauhan
    • 1
  • Anilkumar B. Hirpara
    • 1
  • M. P. Deshpande
    • 1
  1. 1.P. G. Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.Shri A. N. Patel PG Institute of Science and ResearchAnandIndia
  3. 3.Department of Applied and Interdisciplinary SciencesSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations