Structural and electric properties of strontium barium titanate prepared by tartrate precursor method

  • O. M. Hemeda
  • B. I. SalemEmail author
  • M. Mostafa
Regular Article


Strontium barium titanate, Sr1−xBaxTiO3 (BST) was prepared using tartrate precursor method. The X-ray diffraction patterns were used for analyzing the phase compositions. Lattice parameter, crystallite size, X-ray density, bulk density and porosity were calculated. The IR spectra confirm the results of X-ray for the formation of the perovskite structure. The surface morphology of BST at different barium content (x) was studied by scanning electron microscopy (SEM). The DC resistivity was studied as a function of temperature and the mechanism of conduction at different Ba content was established.


  1. 1.
    T. Mazon, M.A. Zaghete, J.A. Varela, E. Longo, Barium strontium titanate nanocrystalline thin films prepared by soft chemical method. J. Eur. Ceram. Soc. 27, 3799–3802 (2007)CrossRefGoogle Scholar
  2. 2.
    N.D. Patel, M.H. Mangrola, K.G. Soni, V.G. Joshi, Structural and electrical properties of nanocrystalline barium strontium titanate. Mater. Today Proc. 4, 3842–3851 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Song, (Ba,Sr)TiO3 for multi-gigabit DRAM, 1998. Accessed Feb 2002
  4. 4.
    C. Weil, P. Wong, H. Downar, J. Wenger, R. Jakoby, Ferroelectric Thick Film Ceramics for Tunable Microwave Coplanar Phase Shifters. Frequenz 54, 11–12 (2000)CrossRefGoogle Scholar
  5. 5.
    F. Zimmermann, M. Voigts, C. Weil, R. Jakoby, P. Wang, W. Menesklou, E. Ivers-Tiffee, J. Eur. Ceram. Soc. 21, 2019–2023 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, MEMS and BST technologies for microwave applications, in electrical and computer engineering, University of California, 2002, p. 140Google Scholar
  7. 7.
    H.V. Alexandru, C. Berbecaru, A. Ioachim, M.I. Toacsen, M.G. Banciu, L. Nedelcu, D. Ghetu, Mater. Sci. Eng. B 109, 152–159 (2004)CrossRefGoogle Scholar
  8. 8.
    K.A. Razak, A. Asadov, J. Yoo, E. Haemmerle, W. Gao, Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method. J. Alloy Compd. 449, 19–23 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, Barium strontium titanate-based perovskite materials for microwave applications. Solid State Chem. 35, 513–520 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Badapanada, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, P.K. Sahoo, Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J. Alloys Compd. 645, 586–596 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Tawfik, O.M. Hemeda, A.M.A. Henaish, A.M. Dorgham, High piezoelectric properties of modified nano lead titanate zirconate ceramics. Mater. Chem. Phys. 211, 1–8 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Dong, A Windows-95-based program for powder X-ray diffraction data processing. PowderX Appl. Crystallogr. (Cph.) 32, 838 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Raja, C.S. Bellan, S. Sundaram, G. Subramani, Thickness dependence on structural, dielectric and AC conduction studies of vacuum evaporated Sr doped BaTiO3 thin films. Optik 127, 3200–3205 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Mahmoud, Issue and hints about UV-optical measurements of (Ba1 x Srx) TiO3 nano-powder synthesized by sol-gel method. Optik 158, 870–881 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Y.H. Huang, Y.J. Wu, J. Li, B. Liu, X.M. Chen, Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering. J. Alloy Compd. 701, 439–446 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Jin, W. Luo, L. Hou, Y. Tian, Q. Hu, L. Wang, L. Zhang, X. Lu, H. Du, X. Wei, Y. Yan, G. Liu, High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. J. Eur. Ceram. Soc. 39, 295–304 (2019)CrossRefGoogle Scholar
  17. 17.
    F.F. Lange, Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)CrossRefGoogle Scholar
  18. 18.
    H.P. Li, J. Wang, R. Stevens, The effect of hydroxide gel drying on the characteristics of co-precipitated zirconia-hafnia powders. J Mat Soc 28, 553–560 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yao, S. Li, Y. Jia, S. Xie, Microstructure and dielectric properties of BaxSr1–xTiO3 ceramics prepared by direct current arc discharge technique. J. Alloy Compd. 651, 273–277 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Sittiketkorn, S. Thountom, T. Bongkarn, NU Sci. J. 5(2), 143–150 (2008)Google Scholar
  21. 21.
    X. Shen, Z. Zhou, F. Song, X. Meng, J. Sol-Gel Sci. Technol. 53, 405–411 (2010)CrossRefGoogle Scholar
  22. 22.
    J.E. Jeon, H. Han, K.R. Park, Y.R. Hong, K.B. Shim, S. Mhin, Ceram. Int. 44, 1420–1424 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations