Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Quasinormal modes of five-dimensional black holes in non-commutative geometry

Abstract

We compute the spectrum of quasinormal frequencies of five-dimensional black holes obtained in noncommutative geometry. In particular, we study scalar perturbations of a massive scalar field adopting the sixth order WKB approximation. We investigate in detail the impact of the mass of the scalar field, the angular degree and the overtone number on the spectrum. All modes are found to be stable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    A. Einstein, Ann. Phys. 49, 769–822 (1916)

  2. 2.

    J. Bardeen, Presented at GR5, Tiflis, U.S.S.R., and published in the conference proceedings in the U.S.S.R. (1968)

  3. 3.

    A. Borde, Phys. Rev. D 55, 7615 (1997). arXiv: gr-qc/9612057

  4. 4.

    E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998). arXiv: gr-qc/9911046

  5. 5.

    E. Ayon-Beato, A. Garcia, Gen. Rel. Gravit. 31, 629 (1999). arXiv: gr-qc/9911084

  6. 6.

    E. Ayon-Beato, A. Garcia, Phys. Lett. B 464, 25 (1999). arXiv: hep-th/9911174

  7. 7.

    K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001). arXiv: gr-qc/0006014

  8. 8.

    I. Dymnikova, Class. Quantum Gravity 21, 4417 (2004). arXiv: gr-qc/0407072

  9. 9.

    S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006). arXiv: gr-qc/0506126

  10. 10.

    L. Balart, E.C. Vagenas, Phys. Lett. B 730, 14 (2014). arXiv:1401.2136 [gr-qc]

  11. 11.

    L. Balart, E.C. Vagenas, Phys. Rev. D 90(12), 124045 (2014). arXiv:1408.0306 [gr-qc]

  12. 12.

    H. Reissner, Ann. Phys. 355, 106–120 (1916)

  13. 13.

    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1973)

  14. 14.

    J.M.M. Senovilla, Gen. Rel. Gravit. 30, 701 (1998). arXiv:1801.04912 [gr-qc]

  15. 15.

    A. Connes, Publ. Math. IHES 62, 44 (1983)

  16. 16.

    A. Connes, Noncommutative Geometry (Academic Press, New York, 1994)

  17. 17.

    A. Connes, J. Lott, Nucl. Phys. Proc. Suppl. 18B, 29 (1991)

  18. 18.

    A. Connes, J. Math. Phys. 41, 3832 (2000). arXiv: hep-th/0003006

  19. 19.

    A. Connes, M.R. Douglas, A.S. Schwarz, JHEP 9802, 003 (1998). arXiv: hep-th/9711162

  20. 20.

    N. Seiberg, E. Witten, JHEP 9909, 032 (1999). arXiv: hep-th/9908142

  21. 21.

    M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, Vol. 1 & 2. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2012)

  22. 22.

    J. Polchinski, String Theory, Vol. 1 & 2. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2005)

  23. 23.

    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257 (1998). arXiv: hep-ph/9804398

  24. 24.

    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). arXiv: hep-ph/9905221

  25. 25.

    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv: hep-th/9906064

  26. 26.

    G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000). arXiv: hep-th/0005016

  27. 27.

    J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999)

  28. 28.

    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

  29. 29.

    M.K. Benna, I.R. Klebanov, Les Houches 87, 611 (2008). arXiv:0803.1315 [hep-th]

  30. 30.

    M. Natsuume, Lect. Notes Phys. 903, 1 (2015). arXiv:1409.3575 [hep-th]

  31. 31.

    T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957)

  32. 32.

    F.J. Zerilli, Phys. Rev. Lett. 24, 737 (1970)

  33. 33.

    F.J. Zerilli, Phys. Rev. D 2, 2141 (1970)

  34. 34.

    F.J. Zerilli, Phys. Rev. D 9, 860 (1974)

  35. 35.

    V. Moncrief, Phys. Rev. D 12, 1526 (1975)

  36. 36.

    S.A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972)

  37. 37.

    S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1985), p. 646

  38. 38.

    B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837 [gr-qc]

  39. 39.

    B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations]. Phys. Rev. Lett. 116(24), 241103 (2016). arXiv:1606.04855 [gr-qc]

  40. 40.

    B.P. Abbott et al., [LIGO Scientific and VIRGO Collaborations]. Phys. Rev. Lett. 118(22), 221101 (2017). arXiv:1706.01812 [gr-qc]

  41. 41.

    B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations]. Phys. Rev. Lett. 119(14), 141101 (2017). arXiv:1709.09660 [gr-qc]

  42. 42.

    B.P. Abbott et al., [LIGO Scientific and Virgo Collaborations]. Astrophys. J. 851(2), L35 (2017). arXiv:1711.05578 [astro-ph.HE]

  43. 43.

    V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela, P. Pani, Phys. Rev. D 94(8), 084031 (2016). arXiv:1608.08637 [gr-qc]

  44. 44.

    K.D. Kokkotas, B.G. Schmidt, Living Rev. Relat. 2, 2 (1999). arXiv:gr-qc/9909058

  45. 45.

    E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

  46. 46.

    R.A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011). arXiv:1102.4014 [gr-qc]

  47. 47.

    P. Bizon, T. Chmaj, B.G. Schmidt, Phys. Rev. Lett. 95, 071102 (2005). arXiv:gr-qc/0506074

  48. 48.

    P. Bizon, T. Chmaj, A. Rostworowski, B.G. Schmidt, Z. Tabor, Phys. Rev. D 72, 121502 (2005). arXiv:gr-qc/0511064

  49. 49.

    P. Kanti, Int. J. Mod. Phys. A 19, 4899 (2004). arXiv: hep-ph/0402168

  50. 50.

    S. Hod, Phys. Rev. Lett. 81, 4293 (1998). arXiv:gr-qc/9812002

  51. 51.

    G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014

  52. 52.

    A. Kobakhidze, C. Lagger, A. Manning, Phys. Rev. D 94(6), 064033 (2016). arXiv:1607.03776 [gr-qc]

  53. 53.

    K.S. Gupta, E. Harikumar, T. Jurić, S. Meljanac, A. Samsarov, JHEP 1509, 025 (2015). arXiv:1505.04068 [hep-th]

  54. 54.

    K.S. Gupta, T. Jurić, A. Samsarov, JHEP 1706, 107 (2017). arXiv:1703.00514 [hep-th]

  55. 55.

    J. Liang, Chin. Phys. Lett. 35(1), 010401 (2018)

  56. 56.

    J. Liang, Chin. Phys. Lett. 35(5), 050401 (2018)

  57. 57.

    M.D. Ćirić, N. Konjik, A. Samsarov, Class. Quantum Gravity 35(17), 175005 (2018). arXiv:1708.04066 [hep-th]

  58. 58.

    V. Cardoso, O.J.C. Dias, J.P.S. Lemos, Phys. Rev. D 67, 064026 (2003). arXiv: hep-th/0212168

  59. 59.

    R.A. Konoplya, Phys. Rev. D 68, 024018 (2003). arXiv: gr-qc/0303052

  60. 60.

    C. Molina, Phys. Rev. D 68, 064007 (2003). arXiv: gr-qc/0304053

  61. 61.

    H. Kodama, A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003). arXiv: hep-th/0305147

  62. 62.

    R.A. Konoplya, Phys. Rev. D 68, 124017 (2003). arXiv: hep-th/0309030

  63. 63.

    V. Cardoso, J.P.S. Lemos, S. Yoshida, Phys. Rev. D 69, 044004 (2004). arXiv: gr-qc/0309112

  64. 64.

    E. Berti, M. Cavaglia, L. Gualtieri, Phys. Rev. D 69, 124011 (2004). arXiv: hep-th/0309203

  65. 65.

    A. Lopez-Ortega, Gen. Relat. Gravit. 38, 1565 (2006). arXiv: gr-qc/0605027

  66. 66.

    A. Lopez-Ortega, Gen. Relat. Gravit. 38, 1747 (2006). arXiv: gr-qc/0605034

  67. 67.

    A. Lopez-Ortega, Gen. Relat. Gravit. 39, 1011 (2007). arXiv:0704.2468 [gr-qc]

  68. 68.

    A. Lopez-Ortega, Gen. Relat. Gravit. 40, 1379 (2008). arXiv:0706.2933 [gr-qc]

  69. 69.

    G. Panotopoulos, Mod. Phys. Lett. A 33(23), 1850130 (2018). arXiv:1807.03278 [gr-qc]

  70. 70.

    A. Smailagic, E. Spallucci, J. Phys. A 36, L467 (2003). arXiv: hep-th/0307217

  71. 71.

    P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006). arXiv: gr-qc/0510112

  72. 72.

    Y.M. Wu, Y.G. Miao, arXiv:1810.08984 [hep-th]

  73. 73.

    K. Zhou, Z.Y. Yang, D.C. Zou, R.H. Yue, Chin. Phys. B 21, 020401 (2012). arXiv:1107.2732 [gr-qc]

  74. 74.

    S. Hansraj, B. Chilambwe, S.D. Maharaj, Eur. Phys. J. C 75(6), 277 (2015). arXiv:1502.02219 [gr-qc]

  75. 75.

    F.R. Tangherlini, Nuovo Cim. 27, 636 (1963)

  76. 76.

    J.E. Moyal, Proc. Camb. Philos. Soc. 45, 99 (1949)

  77. 77.

    F. A. Schaposnik, arXiv:hep-th/0408132

  78. 78.

    C. Muller, Lecture Notes in Mathematics: Spherical Harmonics (Springer, Berlin, 1966)

  79. 79.

    V. Ferrari, L. Gualtieri, Gen. Relat. Gravit. 40, 945 (2008). arXiv:0709.0657 [gr-qc]

  80. 80.

    G. Poschl, E. Teller, Z. Phys. 83, 143 (1933)

  81. 81.

    V. Ferrari, B. Mashhoon, Phys. Rev. D 30, 295 (1984)

  82. 82.

    V. Cardoso, J.P.S. Lemos, Phys. Rev. D 63, 124015 (2001). arXiv: gr-qc/0101052

  83. 83.

    D. Birmingham, Phys. Rev. D 64, 064024 (2001). arXiv: hep-th/0101194

  84. 84.

    V. Cardoso, J.P.S. Lemos, Phys. Rev. D 67, 084020 (2003). https://doi.org/10.1103/PhysRevD.67.084020. arXiv: gr-qc/0301078

  85. 85.

    S. Fernando, Gen. Relat. Gravit. 36, 71 (2004). arXiv: hep-th/0306214

  86. 86.

    S. Fernando, Phys. Rev. D 77, 124005 (2008). arXiv:0802.3321 [hep-th]

  87. 87.

    K. Destounis, G. Panotopoulos, Á. Rincón, Eur. Phys. J. C 78(2), 139 (2018). arXiv:1801.08955 [gr-qc]

  88. 88.

    A. Ovgün, K. Jusufi, Ann. Phys. 395, 138 (2018). arXiv:1801.02555 [gr-qc]

  89. 89.

    Á. Rincón, G. Panotopoulos, Eur. Phys. J. C 78(10), 858 (2018). arXiv:1810.08822 [gr-qc]

  90. 90.

    B.F. Schutz, C.M. Will, Astrophys. J. 291, L33 (1985)

  91. 91.

    S. Iyer, C.M. Will, Phys. Rev. D 35, 3621 (1987)

  92. 92.

    S. Iyer, Phys. Rev. D 35, 3632 (1987)

  93. 93.

    K.D. Kokkotas, B.F. Schutz, Phys. Rev. D 37, 3378 (1988)

  94. 94.

    E. Seidel, S. Iyer, Phys. Rev. D 41, 374 (1990)

  95. 95.

    R. Konoplya, Phys. Rev. D 71, 024038 (2005). arXiv: hep-th/0410057

  96. 96.

    S. Fernando, C. Holbrook, Int. J. Theor. Phys. 45, 1630 (2006). arXiv: hep-th/0501138

  97. 97.

    S.K. Chakrabarti, Gen. Relat. Gravit. 39, 567 (2007). arXiv: hep-th/0603123

  98. 98.

    S. Fernando, J. Correa, Phys. Rev. D 86, 064039 (2012). arXiv:1208.5442 [gr-qc]

  99. 99.

    V. Santos, R.V. Maluf, C.A.S. Almeida, Phys. Rev. D 93(8), 084047 (2016). arXiv:1509.04306 [gr-qc]

  100. 100.

    J.L. Blázquez-Salcedo, F.S. Khoo, J. Kunz, arXiv:1706.03262 [gr-qc]

  101. 101.

    G. Panotopoulos, Á. Rincón, Int. J. Mod. Phys. D 27(03), 1850034 (2017). arXiv:1711.04146 [hep-th]

  102. 102.

    Á. Rincón, G. Panotopoulos, Phys. Rev. D 97(2), 024027 (2018). arXiv:1801.03248 [hep-th]

  103. 103.

    http://www.wolfram.com

  104. 104.

    R.A. Konoplya, A. Zhidenko, Phys. Rev. D 81, 124036 (2010). arXiv:1004.1284 [hep-th]

  105. 105.

    J. Matyjasek, M. Opala, Phys. Rev. D 96(2), 024011 (2017). arXiv:1704.00361 [gr-qc]

  106. 106.

    R.A. Konoplya, A. Zhidenko, A.F. Zinhailo, Class. Quantum Gravity 36, 155002 (2019). arXiv:1904.10333 [gr-qc]

  107. 107.

    V. Cardoso, A.S. Miranda, E. Berti, H. Witek, V.T. Zanchin, Phys. Rev. D 79, 064016 (2009). arXiv:0812.1806 [hep-th]

Download references

Acknowledgements

The author G. P. thanks the Fundação para a Ciência e Tecnologia (FCT), Portugal, for the financial support to the Center for Astrophysics and Gravitation-CENTRA, Instituto Superior Técnico, Universidade de Lisboa, through the Grant No. UID/FIS/00099/2013. The author Á. R. acknowledges DI-VRIEA for financial support through Proyecto Postdoctorado 2019 VRIEA-PUCV.

Author information

Correspondence to Grigoris Panotopoulos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panotopoulos, G., Rincón, Á. Quasinormal modes of five-dimensional black holes in non-commutative geometry. Eur. Phys. J. Plus 135, 33 (2020). https://doi.org/10.1140/epjp/s13360-019-00016-z

Download citation