Advertisement

Semi-rational and periodic wave solutions for the (3+1)-dimensional Jimbo–Miwa equation

  • Xiang LuoEmail author
Regular Article
  • 16 Downloads

Abstract

In this paper, higher-order periodic wave solution in determinant form is investigated via the Kadomtsev–Petviashvili hierarchy reduction for the \((3+1)\)-dimensional Jimbo–Miwa equation. We obtain the breather and periodic wave via such solution. The breather is periodic in space and localized in time, while amplitude of the periodic wave changes with the value of y. Besides, interaction between the breather and periodic wave shows a different characteristic in which amplitude of the periodic wave changes after the interaction. By taking the long wave limit to the periodic wave solution, we obtain the semi-rational solution, and then derive the rogue wave and kink-like soliton. Furthermore, we conclude that (1) rogue wave can be obtained with the limit on the breather; (2) kink-like soliton can be obtained with the limit on the periodic wave. Via the semi-rational solution, interactions between the rogue wave and breather, between the kink-like soliton and breather, are illustrated.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant nos. 11771415 and 11371337, by the Fundamental Research Funds for the Central Universities of China under Grant no. WK3470000005.

References

  1. 1.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Ablowitz, P.A. Clarkson, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
  3. 3.
    H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    G.F. Yu, Z.W. Xu, Phys. Rev. E 91, 062902 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    K.B. Dysthe, K. Trulsen, Phys. Scr. 1999, 48 (1999)CrossRefGoogle Scholar
  6. 6.
    C.Q. Dai, H.P. Zhu, Ann. Phys. 341, 142 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    W.X. Ma, Phys. Lett. A 379, 1975 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D.H. Peregrine, J. Aust. Math. Soc. Ser. B 25, 16 (1983)CrossRefGoogle Scholar
  9. 9.
    B. Guo, L. Ling, Q.P. Liu, Phys. Rev. E 85, 026607 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Chabchoub, N. Hoffmann, M. Onorato, N. Ahmediev, Phys. Rev. X 2, 011015 (2012)Google Scholar
  11. 11.
    D.J. Kedziora, A. Ankiewicz, N. Ahmediev, Phys. Rev. E 85, 066601 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Manakov, V.E. Zakharov, Phys. Lett. A 63, 205 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    W.R. Sun, L. Wang, Proc. R. Soc. A 474, 20170276 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Abdou, Nonlinear Dyn. 52, 1 (2008)CrossRefGoogle Scholar
  15. 15.
    Z.Z. Lan, B. Gao, M.J. Du, Chaos Solitons Fractals 111, 169 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    X.Y. Xie, G.Q. Meng, Nonlinear Dyn. 93, 779 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Ohta, J. Yang, Proc. R. Soc. A 468, 1716 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    B.F. Feng, J. Phys. A 47, 355203 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Ohta, J. Yang, Phys. Rev. E 86, 036604 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Rao, K. Porsezian, J. He, Chaos 27, 083115 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Chen, Y. Chen, B.F. Feng, K. Maruno, J. Phys. Soc. Jpn. 84, 034002 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    B.B. Kadomtsev, V.I. Petviashvili, Sov. Phys. Doki. 15, 539 (1970)ADSGoogle Scholar
  23. 23.
    M. Sato, North-Holland Math. Stud. 81, 259 (1983)CrossRefGoogle Scholar
  24. 24.
    M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci. 19, 943 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    X.Y. Tang, Z.F. Liang, Phys. Lett. A 351, 398 (2006)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Z. Dai, Z. Li, Z. Liu, D. Li, Phys. A 384, 285 (2007)CrossRefGoogle Scholar
  27. 27.
    A.M. Wazwaz, Appl. Math. Comput. 203, 592 (2008)MathSciNetGoogle Scholar
  28. 28.
    T. Özis, I. Aslan, Phys. Lett. A 372, 7011 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Tang, W.X. Ma, W. Xu, L. Gao, Appl. Math. Comput. 217, 8722 (2011)MathSciNetGoogle Scholar
  30. 30.
    Y. Tang, J. Tu, W.X. Ma, Appl. Math. Comput. 218, 10050 (2012)MathSciNetGoogle Scholar
  31. 31.
    Y. Zhang, L. Jin, Y. Kang, Appl. Math. Comput. 219, 2601 (2012)MathSciNetGoogle Scholar
  32. 32.
    J.Y. Yang, W.X. Ma, Comput. Math. Appl. 73, 220 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Tian, Z. Dai, J. Xie, L. Hu, Z. Naturforsch. A 73, 43 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    X. Yong, X. Li, Y. Huang, Appl. Math. Lett. 86, 222 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    X. Zhang, Y. Chen, Commun. Nonlinear Sci. Numer. Simul. 52, 24 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    C. He, Y. Tang, J. Ma, Comput. Math. Appl. 76, 2141 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Chen, Y. Chen, B.F. Feng, K. Maruno, arXiv:1712.00945 (2017)
  38. 38.
    W. Liu, A.M. Wazwaz, X. Zheng, Commun. Nonlinear Sci. Numer. Simul. 67, 480 (2019)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M.J. Ablowitz, J. Satsuma, J. Math. Phys. 19, 2180 (1978)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Satsuma, M.J. Ablowitz, J. Math. Phys. 20, 1496 (1979)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge Univ. Press, Cambridge, 2004)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Wu Wen-Tsun Key Laboratory of MathematicsChinese Academy of SciencesBeijingChina
  2. 2.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations