Supersymmetric hybrid inflation with non-minimal coupling to gravity

  • Umananda Dev GoswamiEmail author
Regular Article


We have studied the paradigm of cosmic inflation using the simplest model based on the idea of supersymmetric hybrid inflation with non-minimal coupling to gravity, specially under the slow-roll approximation following the superconformal approach to supergravity. It is found that within a range of values of the non-minimal coupling parameter \(\xi \), the model can accommodate the inflation data reported by the Planck (\(n_s\) and upper limit of r) and BICEP2/Keck (upper limit of r) collaborations. The study shows that the most probable value of \(\xi \) should be \(\sim 0.0134\pm 0.0005\). That is coupling is found to be very weak. Within this range of \(\xi \), the values of r estimated from our model for 50–70 e-foldings are found to lay well below the upper limits set by the Planck and BICEP2/Keck collaborations. Similarly, values of \(n_s\) obtained for the said parameters are in good agreement with its latest data of the Planck collaboration. The constraint equations for the running of the scalar spectral index \(n_{sk}\) and its running \(n_{skk}\) are derived from the numerical solutions of our model for these parameters. These equations can be used to test our model from the data of future cosmological observations.



The author is thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune for hospitality during his visits as a Visiting Associate of the institute. He also thankful to the anonymous referee for his/her useful comments that led to improvement of the manuscript.


  1. 1.
    D. Kazanas, Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. Lett. 241, L59 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    K. Sato, First-order phase transition of a vacuum and the expansion of the Universe. Mon. Not. R. Astron. Soc. 195, 467 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    K. Sato, Cosmological baryon-number domain structure and the first order phase transition of a vacuum. Phys. Lett. B 99, 66 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    B.A. Bassett, S. Tsujikawa, D. Wands, Inflation dynamics and reheating. Rev. Mod. Phys. 78, 537 (2000). arXiv:astro-ph/0507632 ADSCrossRefGoogle Scholar
  7. 7.
    J. Martin, C. Ringeval, V. Vennin, Encyclopedia Inflationaris. Phys. Dark Univ. 5–6, 75 (2014). arXiv:1303.3787 CrossRefGoogle Scholar
  8. 8.
    C.L. Bennett et al., 4-Year COBE DMR cosmic microwave background observations: maps and basic results. Astrophys. J. 464, L1 (1996). [arXiv:astro-ph/9601067]ADSCrossRefGoogle Scholar
  9. 9.
    P. A. R. Ade et al. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, A&A571, A16 (2014). arXiv:1303.5076
  10. 10.
    P. A. R. Ade et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, A&A594, A13 (2016). arXiv:1502.01589
  11. 11.
    P.A.R. Ade et al., (BICEP2 Collaboration), BICEP2 I: detection of B-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985
  12. 12.
    P.A.R. Ade et al. (Keck Array and BICEP2 Collaborations), BICEP2 / Keck array VI: improved constraints on cosmology and foregrounds when adding 95 GHz data from Keck array. Phys. Rev. Lett. 116, 031302 (2016). arXiv:1510.09217
  13. 13.
    G. Hinshaw et al. [WMAP Collaboration], Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226
  14. 14.
    A. Linde, Chaotic inflation. Phys. Lett. B 129, 177 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Linde, Hybrid inflation. Phys. Rev. D 49, 748 (1994). arXiv:astro-ph/9307002 ADSCrossRefGoogle Scholar
  16. 16.
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands, False vacuum inflation with Einstein gravity. Phys. Rev. D 49, 6410 (1994). arXiv:astro-ph/9401011 ADSCrossRefGoogle Scholar
  17. 17.
    M. Kawasaki, M. Yamaguchi, T. Yanagida, Natural chaotic inflation in supergravity. Phys. Rev. Lett. 85, 3572 (2000). arXiv:hep-ph/0004243 ADSCrossRefGoogle Scholar
  18. 18.
    J.L. Feng, Naturalness and the status of supersymmetry. Annu. Rev. Nucl. Part. Sci. 63, 351 (2013). arXiv:1302.6587 ADSCrossRefGoogle Scholar
  19. 19.
    L.E. Mendes, A.R. Liddle, Initial conditions for hybrid inflation. Phys. Rev. D 62, 103511 (2000). arXiv:astro-ph/0006020 ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 314, 1 (1999). arXiv:hep-ph/9807278 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, Higgs after the discovery: a status report. JHEP 10, 196 (2012). arXiv:1207.1718 ADSCrossRefGoogle Scholar
  22. 22.
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani, A. Van Proeyen, Superconformal symmetry, NMSSM, and inflation. Phys. Rev. D 83, 025008 (2011). arXiv:1008.2942 ADSCrossRefGoogle Scholar
  23. 23.
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani, A. Van Proeyen, Jordan frame supergravity and inflation in NMSSM. Phys. Rev. D 82, 045003 (2010). arXiv:1004.0712 ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Lee, Chaotic inflation in Jordan frame supergravity. JCAP 08, 003 (2010). arXiv:1005.2735 ADSCrossRefGoogle Scholar
  25. 25.
    D.S. Salopek, J.R. Bond, J.M. Bardeen, Designing density fluctuation spectra in inflation. Phys. Rev. D 40, 1753 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    T. Futamase, K.-I. Maeda, Chaotic inflationary scenario of the Universe with a nonminimally coupled “inflaton” field. Phys. Rev. D 39, 399 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    R. Fakir, W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 41, 1783 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    S. Mukaigawa, T. Muta, S.D. Odintsov, Finite grand unified theories and inflation. Int. J. Mod. Phys. A 13, 2739 (1998). arXiv:hep-ph/9709299 ADSCrossRefGoogle Scholar
  29. 29.
    F.L. Bezrukov, M. Shaposhnikov, The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 ADSCrossRefGoogle Scholar
  30. 30.
    A.O. Barvinsky, A.Y. Kamenshchik, A.A. Starobinsky, Inflation scenario via the standard model Higgs boson and LHC. JCAP 11, 021 (2008). arXiv:0809.2104 ADSCrossRefGoogle Scholar
  31. 31.
    F. Bezrukov, M. Shaposhnikov, standard Model Higgs boson mass from inflation: two loop analysis. JHEP 07, 089 (2009). arXiv:0904.1537 ADSCrossRefGoogle Scholar
  32. 32.
    F. Bezrukov, D. Gorbunov, M. Shaposhnikov, On initial conditions for the Hot Big Bang. JCAP 06, 029 (2009). arXiv:0812.3622 ADSCrossRefGoogle Scholar
  33. 33.
    J.G. Bellido, D.G. Figueroa, J. Rubio, Preheating in the standard model with the Higgs-inflaton coupled to gravity. Phys. Rev. D 79, 063531 (2009). arXiv:0812.4624 ADSCrossRefGoogle Scholar
  34. 34.
    A.D. Simone, M.P. Hertzberg, F. Wilczek, Running inflation in the standard model. Phys. Lett. B 678, 1 (2009). arXiv:0812.4946 ADSCrossRefGoogle Scholar
  35. 35.
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. JCAP 12, 003 (2009). arXiv:0904.1698 ADSCrossRefGoogle Scholar
  36. 36.
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C. Steinwachs, Higgs boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C 72, 2219 (2012). arXiv:0910.1041 ADSCrossRefGoogle Scholar
  37. 37.
    F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, Higgs inflation: consistency and generalisations. JHEP 01, 016 (2011). arXiv:1008.5157 ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    S. Choudhury, T. Chakraborty, S. Pal, Higgs inflation from new Kähler potential. Nucl. Phys. B 880, 155 (2014). arXiv:1305.0981 ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    A. Linde, M. Noorbala, A. Westphal, Observational consequences of chaotic inflation with nonminimal coupling to gravity. JCAP 03, 013 (2011). arXiv:1101.2652 ADSCrossRefGoogle Scholar
  40. 40.
    E. Elizalde, S.D. Odintsov, E.O. Pozdeeva, SYu. Vernov, Renormalization-group inflationary scalar electrodynamics and SU(5) scenarios confronted with Planck 2013 and BICEP2 results. Phys. Rev. D 90, 084001 (2014). arXiv:1408.1285 ADSCrossRefGoogle Scholar
  41. 41.
    T. Inagaki, R. Nakanishi, S.D. Odintsov, Inflationary parameters in renormalization group improved \(\varphi ^4\) theory. Astrophys. Sp. Sci. 354, 2108 (2014). arXiv:1408.1270 CrossRefGoogle Scholar
  42. 42.
    T. Inagaki, R. Nakanishi, S.D. Odintsov, Non-minimal two-loop inflation. Phys. Lett. B 745, 105 (2015). arXiv:1502.06301 ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    R. Myrzakulov, S. Odintsov, L. Sebastiani, Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics. Nucl. Phys. B 907, 646 (2016). arXiv:1604.06088 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    E. Elizalde, S.D. Odintsov, E.O. Pozdeeva, S.Y. Vernov, Cosmological attractor inflation from the RG-improved Higgs sector of f inite gauge theory. JCAP 02, 025 (2016). arXiv:1509.08817 ADSCrossRefGoogle Scholar
  45. 45.
    R. Kallosh, A. Linde, New models of chaotic inflation in supergravity. JCAP 11, 011 (2010). arXiv:1008.3375 ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    D.I. Kaiser, A.T. Todhunter, Primordial perturbations from multifield inflation with nonminimal couplings. Phys. Rev. D 81, 124037 (2010). arXiv:1004.3805 ADSCrossRefGoogle Scholar
  47. 47.
    D.I. Kaiser, E.A. Mazenc, E.I. Sfakianakis, Primordial bispectrum from multifield inflation with nonminimal couplings. Phys. Rev. D 87, 064004 (2013). arXiv:1210.7487 ADSCrossRefGoogle Scholar
  48. 48.
    R.N. Greenwood, D.I. Kaiser, E.I. Sfakianakis, Multifield dynamics of Higgs inflation. Phy. Rev. D 87, 064021 (2013). arXiv:1210.8190 ADSCrossRefGoogle Scholar
  49. 49.
    D.I. Kaiser, E.I. Sfakianakis, Multifield inflation after Planck: the case for nonminimal couplings. Phys. Rev. Lett. 112, 011302 (2014). arXiv:1304.0363 ADSCrossRefGoogle Scholar
  50. 50.
    K. Schutz, E.I. Sfakianakis, D.I. Kaiser, Multifield inflation after Planck: isocurvature modes from nonminimal couplings. Phys. Rev. D 89, 064044 (2014). arXiv:1310.8285 ADSCrossRefGoogle Scholar
  51. 51.
    G. Lazarides, C. Pallis, Shift symmetry and Higgs inflation in supergravity with observable gravitational waves. JHEP 1511, 114 (2015). arXiv:1508.06682 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    C. Pallis, Kinetically modified nonminimal Higgs inflation in supergravity. Phys. Rev. D 92, 121305 (2015). arXiv:1511.01456 ADSCrossRefGoogle Scholar
  53. 53.
    A. Mazumdar, J. Rocher, Particle physics models of inflation and curvaton scenarios. Phys. Rep. 497, 85 (2011). arXiv:1001.0993 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    G. Dvali, Q. Shafi, R. Schaefer, Large scale structure and supersymmetric inflation without fine tuning. Phys. Rev. Lett. 73, 1886 (1994). arXiv:hep-ph/9406319 ADSCrossRefGoogle Scholar
  55. 55.
    S. Orani, A. Rajantie, Supersymmetric hybrid inflation with a light scalar. Phys. Rev. D 88, 043508 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    K. Das, V. Domcke, K. Dutta, Supergravity contributions to Inflation in models with non-minimal coupling to gravity. JCAP 03, 036 (2017). arXiv:1612.07075 ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    R. Kallosh, L. Kofman, A.D. Linde, A. Van Proeyen, Superconformal symmetry, supergravity and cosmology. Class. Quant. Gravit. 17, 4269 (2000). arXiv:hep-th/0006179, [Erratum-ibid 21 (2004) 5017]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, P. van Nieuwenhuizen, Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant. Nucl. Phys. B 147, 105 (1979)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    E. Cremmer, S. Ferrara, L. Girardello, A. Van Proeyen, Yang–Mills theories with local supersymmetry: Lagrangian, transformation laws and superHiggs effect. Nucl. Phys. B 212, 413 (1983)ADSCrossRefGoogle Scholar
  60. 60.
    M. Civiletti, C. Pallis, Q. Shafi, Upper bound on the tensor-to-scalar ratio in GUT-scale supersymmetric hybrid inflation. Phys. Lett. B 733, 276 (2014). arXiv:1402.6254 ADSCrossRefGoogle Scholar
  61. 61.
    T. Kobayashi, O. Seto, Beginning of universe through large field hybrid inflation. Mod. Phys. Lett. A 30, 1550106 (2015). arXiv:1404.3102 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    G. Felder, A. Frolov, L. Kofman, A. Linde, Cosmology with negative potentials. Phys. Rev. D 66, 023507 (2002). arXiv:hep-th/0202017 ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    M.C. González, G. German, A.H. Aguilar, J.C. Hidalgo, R. Sussman, Testing hybrid natural inflation with BICEP2. Phys. Lett. B 734, 345 (2014). arXiv:1404.1122 ADSCrossRefGoogle Scholar
  64. 64.
    I. Antoniadis, A. Chatrabhuti, H. Isono, R. Knoops, Inflation from supersymmetry breaking. Eur. Phys. J. C 77, 724 (2017). arXiv:1706.04133 ADSCrossRefGoogle Scholar
  65. 65.
    P. Adshead, R. Easther, J. Pritchard, A. Loeb, Inflation and the scale dependent spectral index: prospects and strategies. JCAP 1102, 021 (2011). arXiv:1007.3748 ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PhysicsDibrugarh UniversityDibrugarhIndia

Personalised recommendations