Advertisement

Nonlinear dynamics of a pendulum-beam coupling piezoelectric energy harvesting system

  • Li HaitaoEmail author
  • Weiyang Qin
Regular Article
  • 30 Downloads

Abstract.

To improve the transform efficiency of vibration energy, we proposed a novel energy harvester composed of a piezoelectric cantilever beam and a pendulum. Under horizontal excitations, the pendulum oscillation will lead to a fluctuation in the tension force of the rope and to a change in the compressive force acting on the beam, which could be employed to make the beam reach dynamic buckling. This buckling could lead to a large amplitude vibration and high voltage output. First, the kinetic energy and potential energy of the system are obtained; then the electromechanical coupling equations are derived based on the extended Hamilton’s principle. Furthermore, the dynamical responses of the system subjected to both harmonic and random excitations are explored. The influence of parameters on the performance is thoroughly discussed. The simulation results proved that large pendulum mass and large initial pendulum angle could make the beam buckle more easily, which is beneficial for converting broadband ambient vibration energy. It is also found that the optimal pendulum length could bring about large-amplitude vibrations and generate a considerably high output voltage.

References

  1. 1.
    A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (John Wiley and Sons, 2011)Google Scholar
  2. 2.
    H.A. Sodano, D.J. Inman, G. Park, J. Intell. Mater. Syst. Struct. 16, 799 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Erturk, D.J. Inman, J. Vib. Acoust. 130, 041002 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Li, Y. Wen, P. Li, J. Yang, X. Dai, Sensors Actuators A 166, 102 (2011)CrossRefGoogle Scholar
  5. 5.
    Z. Yang, Y. Zhu, J. Zu, Smart Mater. Struct. 24, 025028 (2015)CrossRefADSGoogle Scholar
  6. 6.
    H.T. Li, W.Y. Qin, J. Zu, Z. Yang, Nonlinear Dyn. 92, 1761 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Tang, Y. Yang, C.K. Soh, J. Intell. Mater. Syst. Struct. 21, 1867 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Wang, L. Zheng, W. Du, W. Cai, J. Zhou, J. Wang, X. Han, G. He, Complexity 2019, 6943234 (2019)Google Scholar
  9. 9.
    H.X. Zou, W.M. Zhang, K.X. Wei, W.B. Li, Z.K. Peng, G. Meng, J. Vib. Acoust. 138, 051007 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Yuan, J. Yang, L.Q. Chen, Int. J. Non-Linear Mech. 95, 296 (2017)CrossRefADSGoogle Scholar
  11. 11.
    J. Cao, A. Syta, G. Litak, S. Zhou, Y. Chen, Eur. Phys. J. Plus 130, 103 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.F. Yang, Q.Y. Wu, Y.L. Wang, W.Y. Qin, K. Lu, Mech. Syst. Signal Process. 124, 36 (2019)CrossRefADSGoogle Scholar
  13. 13.
    H.Y. Chen, X.Y. Mao, H. Ding, L.Q. Chen, Mech. Syst. Signal Process. 135, 1 (2020)CrossRefGoogle Scholar
  14. 14.
    P. Green, K. Worden, K. Atallah, N. Sims, J. Sound Vib. 331, 4504 (2012)CrossRefADSGoogle Scholar
  15. 15.
    S. Zhou, J. Cao, J. Lin, Nonlinear Dyn. 86, 1599 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Masana, M.F. Daqaq, J. Appl. Phys. 111, 044501 (2012)CrossRefADSGoogle Scholar
  17. 17.
    P. Harris, C.R. Bowen, H.A. Kim, G. Litak, Eur. Phys. J. Plus 131, 109 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Kim, J. Seok, J. Sound Vib. 333, 5525 (2014)CrossRefADSGoogle Scholar
  19. 19.
    H.T. Li, W.Y. Qin, C.B. Lan, W.Z. Deng, Z.Y. Zhou, Smart Mater. Struct. 25, 015001 (2015)Google Scholar
  20. 20.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)CrossRefADSGoogle Scholar
  22. 22.
    G. Hu, L. Tang, R. Das, P. Marzocca, Int. J. Mech. Sci. 149, 500 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Wang, Q. Zhang, W. Wang, J. Sound Vib. 399, 169 (2017)CrossRefADSGoogle Scholar
  24. 24.
    R. Masana, M.F. Daqaq, J. Sound Vib. 330, 6036 (2011)CrossRefADSGoogle Scholar
  25. 25.
    W. Liu, A. Badel, F. Formosa, Y. Wu, A. Agbossou, Smart Mater. Struct. 22, 035013 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Y. Zhu, J. Zu, J. Intell. Mater. Syst. Struct. 25, 1890 (2014)CrossRefGoogle Scholar
  27. 27.
    W.J. Su, J.W. Zu, Smart Mater. Struct. 23, 095012 (2014)CrossRefADSGoogle Scholar
  28. 28.
    K. Fan, S. Liu, H. Liu, Y. Zhu, W. Wang, D. Zhang, Appl. Energy 216, 8 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Liang, Y. Wu, L. Zuo, Smart Mater. Struct. 25, 095042 (2016)CrossRefADSGoogle Scholar
  30. 30.
    J. Xu, J. Tang, J. Intell. Mater. Syst. Struct. 28, 323 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Kecik, Mech. Syst. Signal Process. 106, 198 (2018)CrossRefADSGoogle Scholar
  32. 32.
    A.N. Kadjie, P. Woafo, Theor. Appl. Mech. Lett. 4, 063001 (2014)CrossRefGoogle Scholar
  33. 33.
    M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, J. Intell. Mater. Syst. Struct. 23, 1505 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Roundy, J. Tola, Smart Mater. Struct. 23, 105004 (2014)CrossRefADSGoogle Scholar
  35. 35.
    R. Ramezanpour, H. Nahvi, S. Ziaei-Rad, J. Sound Vib. 370, 280 (2016)CrossRefADSGoogle Scholar
  36. 36.
    J.N. Pan, W.Y. Qin, W.Z. Deng, H.L. Zhou, Chin. Phys. B 28, 017701 (2019)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of engineering mechanicsNorth University of ChinaTaiyuanChina
  2. 2.Department of engineering mechanicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations