Advertisement

Probability of radiation of twisted photons by axially symmetric bunches of particles

  • O. V. BogdanovEmail author
  • P. O. Kazinski
Regular Article
  • 9 Downloads

Abstract.

In most cases, the twisted photons generated directly by charged particles in undulators and laser waves are produced by bunches of particles and not by one charged particle. However, up to now, the theoretical studies of such a radiation were mainly based on description of radiation produced by one charged particle. In the present paper, we investigate the effect of a finite width of a particle bunch on radiation of twisted photons. The general formulas connecting the radiation probability distribution of twisted photons produced by bunches of identical particles with the radiation probability distribution of twisted photons generated by one particle are obtained for axially symmetric bunches. The bunch is called axially symmetric if it is axially symmetric with respect to the detector axis at some instant of time and all the particles in the bunch move along parallel trajectories. The general sum rules for the probability of radiation of twisted photons by axially symmetric bunches are established. In particular, we prove that the projection of the average total angular momentum of radiated twisted photons per particle in the bunch does not depend on the radial profile of the bunch. The uniform, Gaussian, and exponential radial bunch profiles are considered in detail. The radiation of axially symmetric bunches in ordinary and crystalline undulators is investigated. The selection rules for radiation of twisted photons by one particle in undulators are violated when the finite width of the particle bunch is taken into account. We find the condition when this violation is marginal. The form of the radiation probability distribution of twisted photons becomes universal for wide incoherent axially symmetric particle bunches. We completely describe these universal distributions.

References

  1. 1.
    K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamentals (Springer, New York, 2003)zbMATHGoogle Scholar
  2. 2.
    R. Jáuregui, S. Hacyan, Phys. Rev. A 71, 033411 (2005)ADSGoogle Scholar
  3. 3.
    I. Bialynicki-Birula, Z. Bialynicka-Birula, Opt. Commun. 264, 342 (2006)ADSGoogle Scholar
  4. 4.
    U.D. Jentschura, V.G. Serbo, Phys. Rev. Lett. 106, 013001 (2011)ADSGoogle Scholar
  5. 5.
    U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 71, 1571 (2011)ADSGoogle Scholar
  6. 6.
    I.P. Ivanov, Phys. Rev. D 83, 093001 (2011)ADSGoogle Scholar
  7. 7.
    J. Leach et al., Phys. Rev. Lett. 88, 257901 (2002)ADSGoogle Scholar
  8. 8.
    G.C.G. Berkhout et al., Phys. Rev. Lett. 105, 153601 (2010)ADSGoogle Scholar
  9. 9.
    T. Su et al., Opt. Express 20, 9396 (2012)ADSGoogle Scholar
  10. 10.
    M.P.J. Lavery, J. Courtial, M.J. Padgett, Measurement of light’s orbital angular momentum, in The Angular Momentum of Light, edited by D.L. Andrews, M. Babiker (Cambridge University Press, New York, 2013)Google Scholar
  11. 11.
    G. Ruffato et al., Sci. Rep. 8, 10248 (2018)ADSGoogle Scholar
  12. 12.
    B. Paroli, M. Siano, L. Teruzzi, M.A.C. Potenza, Phys. Rev. Accel. Beams 22, 032901 (2019)ADSGoogle Scholar
  13. 13.
    M.J. Padgett, Opt. Express 25, 11267 (2017)ADSGoogle Scholar
  14. 14.
    D.L. Andrews, M. Babiker (Editors), The Angular Momentum of Light (Cambridge University Press, New York, 2013)Google Scholar
  15. 15.
    J.P. Torres, L. Torner (Editors), Twisted Photons (Wiley-VCH, Weinheim, 2011)Google Scholar
  16. 16.
    D.L. Andrews (Editor), Structured Light and Its Applications (Academic Press, Amsterdam, 2008)Google Scholar
  17. 17.
    S. Sasaki, I. McNulty, Phys. Rev. Lett. 100, 124801 (2008)ADSGoogle Scholar
  18. 18.
    E. Hemsing, A. Marinelli, S. Reiche, J. Rosenzweig, Phys. Rev. ST Accel. Beams 11, 070704 (2008)ADSGoogle Scholar
  19. 19.
    E. Hemsing, A. Marinelli, J.B. Rosenzweig, Phys. Rev. Lett. 106, 164803 (2011)ADSGoogle Scholar
  20. 20.
    A. Afanasev, A. Mikhailichenko, On generation of photons carrying orbital angular momentum in the helical undulator, arXiv:1109.1603Google Scholar
  21. 21.
    V.A. Bordovitsyn, O.A. Konstantinova, E.A. Nemchenko, Russ. Phys. J. 55, 44 (2012)Google Scholar
  22. 22.
    S. Stock, A. Surzhykov, S. Fritzsche, D. Seipt, Phys. Rev. A 92, 013401 (2015)ADSGoogle Scholar
  23. 23.
    J.A. Sherwin, Phys. Rev. A 95, 052101 (2017)ADSGoogle Scholar
  24. 24.
    M. Katoh et al., Phys. Rev. Lett. 118, 094801 (2017)ADSGoogle Scholar
  25. 25.
    Y. Taira, T. Hayakawa, M. Katoh, Sci. Rep. 7, 5018 (2017)ADSGoogle Scholar
  26. 26.
    P.R. Ribič et al., Phys. Rev. X 7, 031036 (2017)Google Scholar
  27. 27.
    Y.-Y. Chen, J.-X. Li, K.Z. Hatsagortsyan, Ch.H. Keitel, Phys. Rev. Lett. 121, 074801 (2018)ADSGoogle Scholar
  28. 28.
    E. Hemsing et al., Nat. Phys. 9, 549 (2013)Google Scholar
  29. 29.
    J. Bahrdt et al., Phys. Rev. Lett. 111, 034801 (2013)ADSGoogle Scholar
  30. 30.
    M. Katoh et al., Sci. Rep. 7, 6130 (2017)ADSGoogle Scholar
  31. 31.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Phys. Rev. A 97, 033837 (2018)ADSGoogle Scholar
  32. 32.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  33. 33.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Phys. Rev. D 99, 116016 (2019)ADSGoogle Scholar
  34. 34.
    W. Krause, A.V. Korol, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Methods A 483, 455 (2002)ADSGoogle Scholar
  35. 35.
    A. Kostyuk, A. Korol, A. Solov’yov, W. Greiner, Channeling and Radiation in Periodically Bent Crystals (Springer, Heidelberg, 2013)Google Scholar
  36. 36.
    S.V. Abdrashitov, O.V. Bogdanov, P.O. Kazinski, T.A. Tukhfatullin, Phys. Lett. A 382, 3141 (2018)ADSGoogle Scholar
  37. 37.
    V. Epp, J. Janz, M. Zotova, Nucl. Instrum. Methods B 436, 78 (2018)ADSGoogle Scholar
  38. 38.
    G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1944)Google Scholar
  39. 39.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Ann. Phys. 406, 114 (2019)ADSGoogle Scholar
  40. 40.
    G.L. Kotkin, V.G. Serbo, A. Schiller, Int. J. Mod. Phys. A 7, 4707 (1992)ADSGoogle Scholar
  41. 41.
    V.G. Bagrov, V.V. Belov, A.Yu. Trifonov, J. Phys. A 26, 6431 (1993)ADSGoogle Scholar
  42. 42.
    V.V. Belov, D.V. Boltovskiy, A.Yu. Trifonov, Int. J. Mod. Phys. B 8, 2503 (1994)ADSGoogle Scholar
  43. 43.
    V.G. Bagrov, V.V. Belov, A.Yu. Trifonov, Methods of Mathematical Physics: Asymptotic Methods in Relativistic Quantum Mechanics (Tomsk. Politekh. Univ., Tomsk, 2006) (in Russian)Google Scholar
  44. 44.
    O. Matula, A.G. Hayrapetyan, V.G. Serbo, A. Surzhykov, S. Fritzsche, J. Phys. B 46, 205002 (2013)ADSGoogle Scholar
  45. 45.
    O. Matula, A.G. Hayrapetyan, V.G. Serbo, A. Surzhykov, S. Fritzsche, New J. Phys. 16, 053024 (2014)ADSGoogle Scholar
  46. 46.
    D.V. Karlovets, JHEP 03, 049 (2017)ADSMathSciNetGoogle Scholar
  47. 47.
    D.V. Karlovets, G.L. Kotkin, V.G. Serbo, A. Surzhykov, Phys. Rev. A 95, 032703 (2017)ADSGoogle Scholar
  48. 48.
    A.A. Peshkov, S. Fritzsche, A. Surzhykov, Phys. Rev. A 92, 043415 (2015)ADSGoogle Scholar
  49. 49.
    A. Afanasev, V.G. Serbo, M. Solyanik, J. Phys. G 45, 055102 (2018)ADSGoogle Scholar
  50. 50.
    M. Solyanik-Gorgone, A. Afanasev, C.E. Carlson, C.T. Schmiegelow, F. Schmidt-Kaler, J. Opt. Soc. Am. B 36, 565 (2019)ADSGoogle Scholar
  51. 51.
    D.V. Karlovets, Phys. Rev. A 98, 012137 (2018)ADSGoogle Scholar
  52. 52.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series: Special Functions, Vol. 2 (Taylor & Francis, London, 1998)Google Scholar
  53. 53.
    V.G. Bagrov, G.S. Bisnovatyi-Kogan, V.A. Bordovitsyn, A.V. Borisov, O.F. Dorofeev, V.Ya. Epp, V.S. Gushchina, V.C. Zhukovskii, Synchrotron Radiation Theory and its Development (World Scientific, Singapore, 1999)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics FacultyTomsk State UniversityTomskRussia
  2. 2.Division for Mathematics and Computer SciencesTomsk Polytechnic UniversityTomskRussia

Personalised recommendations