Advertisement

Existence and uniqueness of solution of a fractional order tuberculosis model

  • Isa Abdullahi BabaEmail author
  • Behzad Ghanbari
Regular Article
  • 14 Downloads

Abstract.

Tuberculosis is among the infectious diseases that kill human beings worldwide. This paper proposes a fractional order tuberculosis model that studies the dynamics of the disease. The operator considered here is the Atangana-Baleanu one in the Caputo sense. This is to include into the formulation of the model the effect of nonlocal fading memory. The existence and uniqueness of solution of the model is extensively studied. A numerical scheme is established based on the product-integration (PI) rule, which is used to solve the fractional model.

References

  1. 1.
    E.S. Edwin, R.S. Shelley, Am. J. Epidemiol. 147, 398 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Johnbull, O.O. Daniel, O.I. Peter, Greener J. Med. Sci. 3, 270 (2013)CrossRefGoogle Scholar
  3. 3.
    Who Geneva, P. Iuatld, Int. J. Tuberc. Lung Dis. 2, 72 (1998)Google Scholar
  4. 4.
    World Health Organization, Global Tuberculosis Report (2016)Google Scholar
  5. 5.
    R. Yaesoubi, T. Cohen, Proc. Ntl. Acad. Sci. U.S.A. 110, 9457 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.V. Lazarus, M. Olsen, L. Ditiu, S. Matic, HIV Med. 9, 406 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Okuonghae, B.O. Ikhimwin, Front. Microbiol. 6, 1530 (2016)CrossRefGoogle Scholar
  8. 8.
    T.F. Brewer, G.A. Colditz, S.M. Krumplitsch, S.J. Heymann, M.E. Wilson, H.V. Fineberg, J. Am. Med. Assoc. 286, 834 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Caputo, Lectures on seismology and rheological tectonics, in Lecture Notes (Università La Sapienza, Roma, 1992)Google Scholar
  10. 10.
    M. Ciesielski, J. Leszczynski, Numerical simulations of anomalous diffusion, arXiv:math-ph/0309007 (2003)Google Scholar
  11. 11.
    E. Demirci, N. Ozalp, J. Comput. Appl. Math. 236, 2754 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using operators of Caputo type (Springer, Berlin, 2004)Google Scholar
  13. 13.
    G. Gonzalez-Parra, A.J. Arenas, B.M. Chen-Cherpentier, Math. Methods Appl. Sci. 37, 2218 (2014)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Pooseh, H. Rodrigues, D. Torres, AIP Conf. Proc. 1389, 739 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K. Diethelm, Nonlinear Dyn. 60, 81 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Ullah, M.A. Khan, M. Farouq, Chaos, Solitons Fractals 116, 63 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K.M. Owolabi, Eur. Phys. J. Plus 133, 15 (2018)CrossRefGoogle Scholar
  18. 18.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  19. 19.
    C.J. Zuniga-Aguilar, J.F. Gomez-Aguilar, R.F. Escobar-Jimenez, H.M. Romero-Ugalde, Eur. Phys. J. Plus 133, 13 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Kumar, J. Singh, D. Baleanu, Phyisca A 492, 155 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    I. Koca, Eur. Phys. J. Plus 133, 100 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Toufik, A. Atangana, Eur. Phys. J. Plus 132, 444 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Atangana, J.F. Gomez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  25. 25.
    A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, Front. Phys. 5, 19 (2017)CrossRefGoogle Scholar
  26. 26.
    I.A. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Chaos, Solitons Fractals 116, 268 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Young, Proc. R. Soc. London Ser. A 224, 552 (1954)ADSCrossRefGoogle Scholar
  29. 29.
    B. Ghanbari, D. Kumar, Chaos 29, 063103 (2019)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bayero University KanoKanoNigeria
  2. 2.Kermanshah University of TechnologyKermanshahIran

Personalised recommendations