Geometrical unification of gravitation and electromagnetism

  • Sergio A. HojmanEmail author
Regular Article


A theory which unifies gravitation and electromagnetism (GUGE) is presented. This new theory is based on a recent redefinition of proper time. The 5-dimensional metric which arises is similar but not equivalent to the Kaluza-Klein (KK) one. Differences follow. The GUGE metric is deduced while the KK metric is postulated. In the GUGE field theory there is no need to impose either the “cylinder” or the “curling of coordinates” conditions, because they are direct consequences of the GUGE formalism. The GUGE field equations are fully equivalent to Einstein-Maxwell equations, while KK field equations are not. The GUGE 5-dimensional (geodesic) equations are equivalent to the 4-dimensional (non-geodesic) equations for a charged particle moving in the presence of gravitational and electromagnetic fields, unlike the KK 5-dimensional (geodesic) equations which are not. No extra scalar field appears in GUGE. The physical interpretation of the fifth dimension and of the role of the extra field in KK (internal coordinate in GUGE) are totally different in both approaches. Finally, GUGE results include electric charge conservation, electric charge quantization and electric charge contribution to the energy of charged particles even in the absence of electromagnetic fields, unlike the prevailing treatments of KK theories.


  1. 1.
    Hubert F.M. Goenner, Living Rev. Relativ. 7, 2 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Hubert F.M. Goenner, Living Rev. Relativ. 17, 5 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Sergio A. Hojman, Phys. Rev. D 98, 084037 (2018)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Rund, The Differential Geometry of Finsler Spaces (Springer Verlag, Berlin-Götingen-Heidelberg, 1959)CrossRefGoogle Scholar
  5. 5.
    A.P. Balachandran, Per Salomonson, Bo-Sture Skagerstam, Jan-Olov Winnberg, Phys. Rev. D 15, 2308 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    A.P. Balachandran, S. Borchardt, A. Stern, Phys. Rev. D 17, 3247 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    R. Casalbuoni, Phys. Lett. B 62, 44 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    R. Casalbuoni, Nuovo Cimento A 33, 389 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Bialynicky-Birula, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 11, 135 (1963)Google Scholar
  11. 11.
    K. Wilson, Phys. Rev. D 10, 2445 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    R. Coquereaux, G. Esposito-Farese, Ann. Inst. Henri Poincaré, Phys. Théor. 52, 113 (1990)Google Scholar
  13. 13.
    L.L. Williams, J. Grav. 2015, 901870 (2015)Google Scholar
  14. 14.
    F. Grard, J. Nuyts, Phys. Rev. D 74, 124013 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
  2. 2.Centro de Investigación en MatemáticasA.C., Unidad MéridaYucatánMexico
  3. 3.Departamento de Física, Facultad de CienciasUniversidad de ChileSantiagoChile
  4. 4.Centro de Recursos Educativos AvanzadosCREASantiagoChile

Personalised recommendations