Advertisement

Simulation of confined pocket of a city by leapfrogging method

  • Sushil Kumar Singh
  • Ashish
  • Jattan Talan
  • Savinder KaurEmail author
Regular Article

Abstract.

Leapfrogging appears at several levels and hence may be one of the fundamental processes generating urban fractality. Simulations have been performed on random pockets (slums) with different areas and lifetime of the Delhi city. The images were procured and processed using GIS package SAS planet and ImageJ and the fractal dimension was calculated by the box-counting method. In addition, we propose a confined leapfrogging model. Both studies suggests that any such confined pocket shall eventually have a high fractal dimension in the range 1.65-1.85 with a central tendency of 1.76 from the data of pockets and 1.78 from the confined model. These slums will approach a high fractal dimension due to the high level of social and economic pressure there. The confined leapfrogging model is suggested as the underlying process of slum growth.

References

  1. 1.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, San Francisco, 1982)Google Scholar
  2. 2.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941)ADSGoogle Scholar
  3. 3.
    A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B.B. Mandelbrot, Science 155, 636 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    B.B. Mandelbrot, Fractals: Form, Chance and Dimension (W.H. Freeman and Company, New York, 1977)Google Scholar
  6. 6.
    H.O. Peitgen, P.H. Richter, The Beauty of Fractals (Springer Verlag, New York, 1986)zbMATHCrossRefGoogle Scholar
  7. 7.
    J. Feder, Fractals (Plenum Press, New York, 1988)Google Scholar
  8. 8.
    M. Fleischmann, D.J. Tildesley, R.C. Ball, Fractals in the Natural Sciences (Princeton University Press, Princeton, NJ, 1990)Google Scholar
  9. 9.
    H. Lauwerier, Fractals, Endlessly Repeated Geometrical Figures (Princeton University Press, Princeton, NJ, 1991)Google Scholar
  10. 10.
    J.P. Briggs, Fractals: The Patterns of Chaos: Discovering a New Aesthetic of Art, Science and Nature (Simon & Schuster, 1992)Google Scholar
  11. 11.
    L.S. Liebovitch, Fractals and Chaos - Simplified for the Life Sciences (Oxford University Press, USA, 1998)Google Scholar
  12. 12.
    S.H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry and Engineering (Studies in nonlinearity) (Westview Press, 2001)Google Scholar
  13. 13.
    B.B. Mandelbrot, Fractals and Chaos, The Mandelbrot Set and Beyond (Springer Verlag, New York, 2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    K. Falconer, Fractal geometry: mathematical foundations and applications (John Wiley & Sons, 2004)Google Scholar
  15. 15.
    P.C. Ivanov et al., Nature 399, 461 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Ashkenazy et al., Phys. Rev. Lett. 86, 1900 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    R.D. King et al., Brain Imaging Behav. 3, 154 (2009)CrossRefGoogle Scholar
  18. 18.
    H.E. Stanley, P. Meakin, Nature 335, 405 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    X. Zhang et al., ACS Nano 9, 11909 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Koutsoyiannis, Hydrol. Sci. J. 48, 3 (2003)CrossRefGoogle Scholar
  21. 21.
    W. Schlager, Geology 32, 185 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    R.J. Bailey, D.G. Smith, Proc. Geo. Assoc. 116, 129 (2005)CrossRefGoogle Scholar
  23. 23.
    B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Nature 308, 721 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    A.R.T. Jonkers, Phys. Earth Planet. Int. 135, 253 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    T. Gneiting, M. Schlather, SIAM Rev. 46, 269 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H.B. Li et al., Nature 520, 518 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    W. Willinger, M.S. Taqqu, V. Teverovsky, Finance Stochast. 3, 1 (1999)CrossRefGoogle Scholar
  28. 28.
    D. Dejniak, Inform. Syst. Manag. 3, 113 (2014)Google Scholar
  29. 29.
    W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, IEEE/ACM Trans. Netw. 2, 1 (1994)CrossRefGoogle Scholar
  30. 30.
    T. Karagiannis, M. Molle, M. Faloutsos, IEEE Internet Comput. 8, 57 (2004)CrossRefGoogle Scholar
  31. 31.
    C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    B. Jiang, Y. Miao, Professional Geograph. 67, 295 (2015)CrossRefGoogle Scholar
  33. 33.
    B. Jiang, Int. J. Geograph. Inf. Sci. 29, 159 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Soumya et al., Eur. Phys. J. Plus 132, 551 (2017)CrossRefGoogle Scholar
  35. 35.
    M. von Korff, T. Sander, Sci. Rep. 9, 967 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    N.L. Rashevsky, Bull. Math. Biophys. 17, 229 (1955)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Z. He, Sci. Rep. 8, 10324 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    L.F. Richardson, Gen. Syst. Yearb. 6, 139 (1961)Google Scholar
  39. 39.
    S.L. Arlinghaus, Geograf. Ann. B 67, 83 (1985)CrossRefGoogle Scholar
  40. 40.
    M. Batty, Environ. Plan. B 14, 123 (1987)CrossRefGoogle Scholar
  41. 41.
    P. Frankhauser, L’Espace Geograph. 19, 45 (1990)CrossRefGoogle Scholar
  42. 42.
    M. Batty, P. Longley, Fractal Cities: A Geometry of Form and Function (Academic Press, London, 1994)Google Scholar
  43. 43.
    M. Batty, Nature 377, 574 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    S. Salat, L. Bourdic, C. Nowacki, Int J. Sustain. Build. Tech. Urban Dev. 1, 160 (2010)CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, J. Yu, W. Fan, Geo-spatial Inf. Sci. 11, 121 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Ge, Q. Lin, Geo-spatial Inf. Sci. 12, 265 (2009)CrossRefGoogle Scholar
  47. 47.
    L. Benguigui, D. Czamanski, M. Marinov, Y. Portugali, Environ. Plan. B 27, 507 (2000)CrossRefGoogle Scholar
  48. 48.
    S. Jiang, D. Liu, Int. J. Artif. Life Res. 3, 41 (2012)CrossRefGoogle Scholar
  49. 49.
    H.A. Makse, S. Havlin, H.E. Stanley, Nature 377, 608 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    F. Hausdorff, Math. Ann. 79, 157 (1919)CrossRefGoogle Scholar
  51. 51.
    L. Benguigui, D. Czamanski, Geograph. Anal. 36, 69 (2004)CrossRefGoogle Scholar
  52. 52.
    T. Vicsek, J. Phys. A 16, L647 (1983)ADSCrossRefGoogle Scholar
  53. 53.
    L. Benguigui, J. Phys. I 2, 385 (1992)Google Scholar
  54. 54.
    L. Benguigui, Environ. Plan. A 27, 1147 (1995)CrossRefGoogle Scholar
  55. 55.
    M.F. Barnsley, Fractals Everywhere (Academic Press, Boston, MA, 1988)Google Scholar
  56. 56.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Co, NY, 1983)Google Scholar
  57. 57.
    S.A. Pruess, Fractals in Earth Sciences: Some Remarks on the Numerical Estimation of Fractal Dimension (Plenum Press, NY, 1995)CrossRefGoogle Scholar
  58. 58.
    L. Benguigui, D. Czamanski, M. Marinov, Urb. Stud. 38, 1819 (2001)CrossRefGoogle Scholar
  59. 59.
    S. McKillup, Statistics Explained: An Introductory Guide for Life Scientists (Cambridge University Press, New Delhi, India, 2011)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, SGTB Khalsa CollegeUniversity of DelhiDelhiIndia

Personalised recommendations