Advertisement

Topological excitations in rotating Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling in a two-dimensional optical lattice

  • Hui Yang
  • Qingbo Wang
  • Ning Su
  • Linghua WenEmail author
Regular Article
  • 11 Downloads

Abstract.

We study the ground-state configurations and spin textures of rotating two-component Bose-Einstein condensates (BECs) with Rashba-Dresselhaus spin-orbit coupling (RD-SOC), which are confined in a two-dimensional (2D) optical lattice plus a 2D harmonic trap. In the absence of rotation, a relatively small isotropic 2D RD-SOC leads to the generation of ghost vortices for initially miscible BECs, while it gives rise to the creation of rectangular vortex-antivortex lattices for initially immiscible BECs. As the strength of the 2D RD-SOC enhances, the visible vortices or the 2D vortex-antivortex chains are created for the former case, whereas the rectangular vortex-antivortex lattices are transformed into vortex-antivortex rings for the later case. For the initially immiscible BECs with fixed 2D RD-SOC strength, the increase of rotation frequency can result in the structural phase transition from square vortex lattice to irregular triangular vortex lattice and the system transition from initial phase separation to phase mixing. In addition, we analyze the combined effects of 1D RD-SOC and rotation on the vortex configurations of the ground states for the case of initial phase separation. The increase of 1D SOC strength, rotation frequency or both of them may result in the formation of vortex chain and phase mixing. Furthermore, the typical spin textures for both the cases of 2D RD-SOC and 1D RD-SOC are discussed. It is shown that the system favors novel spin textures and skyrmion configurations including an exotic skyrmion-half-skyrmion lattice (skyrmion-meron lattice), a complicated meron lattice, a skyrmion chain, and a Bloch domain wall.

References

  1. 1.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    V. Zapf, M. Jaime, C.D. Batista, Rev. Mod. Phys. 86, 563 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Y.J. Lin, K. Jimenez-García, I.B. Spielman, Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wu, L. Zhang, W. Sun, X.T. Xu, B.Z. Wang, S.C. Ji, Y. Deng, S. Chen, X.J. Liu, J.W. Pan, Science 354, 83 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    L. Huang, Z. Meng, P. Wang, P. Peng, S.-L. Zhang, L. Chen, D. Li, Q. Zhou, J. Zhang, Nat. Phys. 12, 540 (2016)CrossRefGoogle Scholar
  8. 8.
    J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F.C. Top, A.O. Jamison, W. Ketterle, Nature 543, 91 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    H. Zhai, Rep. Prog. Phys. 78, 026001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    T.L. Ho, S. Zhang, Phys. Rev. Lett. 107, 150403 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sinha, R. Nath, L. Santos, Phys. Rev. Lett. 107, 270401 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, L. Mao, C. Zhang, Phys. Rev. lett. 108, 035302 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T. Kawakami, T. Mizushima, M. Nitta, K. Machida, Phys. Rev. lett. 109, 015301 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Stringari, Phys. Rev. Lett. 118, 145302 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Y.V. Kartashov, V.V. Konotop, Phys. Rev. Lett. 118, 190401 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    E. Ruokokoski, J.A.M. Huhtamäki, M. Möttönen, Phys. Rev. A 86, 051607(R) (2012)ADSCrossRefGoogle Scholar
  18. 18.
    X. Li, W.V. Liu, L. Balents, Phys. Rev. Lett. 112, 067202 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C. Wang, C. Gao, C.M. Jian, H. Zhai, Phys. Rev. Lett. 105, 160403 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    X.Q. Xu, J.H. Han, Phys. Rev. Lett. 107, 200401 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    X. Zhou, J. Zhou, C. Wu, Phys. Rev. A 84, 063624 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    H. Hu, B. Ramachandhran, H. Pu, X.J. Liu, Phys. Rev. Lett. 108, 010402 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    H. Sakaguchi, B.A. Malomed, Phys. Rev. A 96, 043620 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    S. Gautam, S.K. Adhikari, Phys. Rev. A 97, 013629 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Xu, L. Mao, B. Wu, C. Zhang, Phys. Rev. Lett. 113, 130404 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    B. Ramachandhran, B. Opanchuk, X.J. Liu, H. Pu, P.D. Drummond, H. Hu, Phys. Rev. A 85, 023606 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    X. Li, Q. Wang, H. Wang, C. Shi, M. Jardine, L. Wen, J. Phys. B 52, 155302 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    J. Radić, T.A. Sedrakyan, I.B. Spielman, V. Galitski, Phys. Rev. A 84, 063604 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Aftalion, P. Mason, Phys. Rev. A 88, 023610 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    A.L. Fetter, Phys. Rev. A 89, 023629 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Z.F. Xu, S. Kobayashi, M. Ueda, Phys. Rev. A 88, 013621 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A.C. White, Y.P. Zhang, T. Busch, Phys. Rev. A 95, 041604(R) (2017)ADSCrossRefGoogle Scholar
  33. 33.
    X.F. Zhang, M. Kato, W. Han, S.G. Zhang, H. Saito, Phys. Rev. A 95, 033620 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    X.F. Zhang, R.F. Dong, T. Liu, W.M. Liu, S.G. Zhang, Phys. Rev. A 86, 063628 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    L. Wen, H. Xiong, B. Wu, Phys. Rev. A 82, 053627 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J. Javanainen, H. Chen, Phys. Rev. A 89, 033613 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Y.V. Kartashov, V.V. Konotop, V.A. Vysloukh, Phys. Rev. A 97, 063609 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    J.-G. Wang, S.-J. Yang, Eur. Phys. J. Plus 133, 441 (2018)CrossRefGoogle Scholar
  39. 39.
    G. Grynberg, C. Robilliard, Phys. Rep. 355, 335 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    L.W. Clark, B.M. Anderson, L. Feng, A. Gaj, K. Levin, C. Chin, Phys. Rev. Lett. 121, 030402 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    H. Pu, L.O. Baksmaty, S. Yi, N.P. Bigelow, Phys. Rev. Lett. 94, 190401 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    S. Tung, V. Schweikhard, E.A. Cornell, Phys. Rev. Lett. 97, 240402 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    J. Radić, A.D. Ciolo, K. Sun, V. Galitski, Phys. Rev. Lett. 109, 085303 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    D.-W. Zhang, J.-P. Chen, C.-J. Shan, Z.D. Wang, S.-L. Zhu, Phys. Rev. A 88, 013612 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    N. Goldman, G. Juzeliunas, P. Öhberg, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Y.V. Kartashov, L.C. Crasovan, A.S. Zelenina, V.A. Vysloukh, A. Sanpera, M. Lewenstein, L. Torner, Phys. Rev. Lett. 93, 143902 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    T. Mizushima, K. Machida, T. Kita, Phys. Rev. Lett. 89, 030401 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. Lett. 93, 250406 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 71, 043611 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    W. Han, S.Y. Zhang, J.J. Jin, W.M. Liu, Phys. Rev. A 85, 043626 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    C.F. Liu, H. Fan, Y.C. Zhang, D.S. Wang, W.M. Liu, Phys. Rev. A 86, 053616 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    D.W. Peaceman, H.H. Rachford, J. Soc. Ind. Appl. Math. 3, 28 (1955)CrossRefGoogle Scholar
  54. 54.
    L. Wen, Y. Qiao, Y. Xu, L. Mao, Phys. Rev. A 87, 033604 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 67, 033610 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    L.H. Wen, X.B. Luo, Laser Phys. Lett. 9, 618 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  59. 59.
    P.W. Anderson, G. Toulouse, Phys. Rev. Lett. 38, 508 (1977)ADSCrossRefGoogle Scholar
  60. 60.
    D.C. Wright, N.D. Mermin, Rev. Mod. Phys. 61, 385 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    N.D. Mermin, T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Microstructural Material Physics of Hebei Province, School of ScienceYanshan UniversityQinhuangdaoChina
  2. 2.Department of PhysicsXinzhou Teachers UniversityXinzhouChina
  3. 3.Department of PhysicsTangshan Normal UniversityTangshanChina

Personalised recommendations