Advertisement

Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation

  • D. Aerts
  • J. Aerts Arguëlles
  • L. Beltran
  • S. Geriente
  • M. Sassoli de Bianchi
  • S. SozzoEmail author
  • T. Veloz
Open Access
Regular Article

Abstract

We provide a general description of the phenomenon of entanglement in bipartite systems, as it manifests in micro and macro physical systems, as well as in human cognitive processes. We do so by observing that when genuine coincidence measurements are considered, the violation of the ‘marginal laws’, in addition to the Bell-CHSH inequality, is also to be expected. The situation can be described in the quantum formalism by considering the presence of entanglement not only at the level of the states, but also at the level of the measurements. However, at the “local” level of a specific joint measurement, a description where entanglement is only incorporated in the state remains always possible, by adopting a fine-tuned tensor product representation. But contextual tensor product representations should only be considered when there are good reasons to describe the outcome-states as (non-entangled) product states. This will not in general be true, hence, the entanglement resource will have to generally be allocated both in the states and in the measurements. In view of the numerous violations of the marginal laws observed in physics’ laboratories, it remains unclear to date if entanglement in micro-physical systems is to be understood only as an ‘entanglement of the states’, or also as an ‘entanglement of the measurements’. But even if measurements would also be entangled, the corresponding violation of the marginal laws (also called ‘no-signaling conditions’) would not for this imply that a superluminal communication would be possible.

Notes

References

  1. 1.
    E. Schrödinger, Math. Proc. Cambridge Phil. Soc. 31, 555 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    J. Bell, Physics 1, 195 (1964)CrossRefGoogle Scholar
  3. 3.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Aspect, Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarization de photons, (Thèse d'Etat, Orsay, 1983)Google Scholar
  6. 6.
    W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 81, 3563 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. Woo Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    B.G. Christensen, K.T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L.K. Shalm, Y. Zhang, S.W. Nam, N. Brunner, C.C.W. Lim, N. Gisin, P.G. Kwiat, Phys. Rev. Lett. 111, 1304 (2013)Google Scholar
  10. 10.
    B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Nature 526, 682 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    X. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Nature 489, 269 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Yin et al., Science 16, 1140 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Nat. Commun. 2, 263 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Deutsch, The Fabric of Reality (Penguin Books, London, 1998)Google Scholar
  15. 15.
    H.P. Stapp, Mindful Universe, in The Frontiers Collection (Springer-Verlag, Berlin, Heidelberg, 2011)Google Scholar
  16. 16.
    R.E. Kastner, The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility (Cambridge University Press, New York, 2013)Google Scholar
  17. 17.
    C.A. Fuchs, On Participatory Realism, in I. Durham, D. Rickles (Editors) Information and Interaction, in The Frontiers Collection (Springer, Cham, 2017)Google Scholar
  18. 18.
    D. Aerts, M. Sassoli de Bianchi, S. Sozzo, M. Veloz, Found. Sci. (2018)  https://doi.org/10.1007/s10699-018-9557-z
  19. 19.
    D. Aerts, S. Aerts, Found. Sci. 1, 85 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Khrennikov, Found. Phys. 29, 1065 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Gabora, D. Aerts, J. Exp. Theor. Artif. Intel. 14, 327 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Atmanspacher, H. Römer, H. Walach, Found. Phys. 32, 379 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Aerts, L. Gabora, Kybernetes 34, 192 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Aerts, The stuff the world is made of: Physics and reality, in Einstein Meets Magritte: An Interdisciplinary Reflection, edited by D. Aerts, J. Broekaert, E. Mathijs (Springer Netherlands, Dordrecht, 1999) pp. 129--183CrossRefGoogle Scholar
  25. 25.
    A. Lambert Mogiliansky, S. Zamir, H. Zwirn, J. Math. Psychol. 53, 349 (2009)CrossRefGoogle Scholar
  26. 26.
    E. Pothos, J. Busemeyer, Proc. R. Soc. London B 276, 2171 (2009)CrossRefGoogle Scholar
  27. 27.
    A.Y. Khrennikov, Ubiquitous Quantum Structure (Springer, Berlin, 2010)CrossRefGoogle Scholar
  28. 28.
    M.L. Dalla Chiara, R. Giuntini, A. Ledda, R. Leporini, G. Sergioli, Found. Phys. 40, 1494 (2010)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.R. Busemeyer, P.D. Bruza, Quantum Models of Cognition and Decision (Cambridge University Press, Cambridge, 2012)Google Scholar
  30. 30.
    E. Haven, A.Y. Khrennikov, Quantum Social Science (Cambridge University Press, Cambridge, 2013)Google Scholar
  31. 31.
    D. Aerts, M. Czachor, J. Phys. A 37, L123 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    C.J. van Rijsbergen, The Geometry of Information Retrieval (Cambridge University Press, Cambridge, 2004)Google Scholar
  33. 33.
    D. Widdows, Geometry and Meaning Stanford: CSLI publicationsGoogle Scholar
  34. 34.
    P. Bruza, K. Kitto, D. Nelson, C. McEvoy, J. Math. Psychol. 53, 362 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Beltrametti, M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli, Fund. Inform. 115, 1 (2012)MathSciNetGoogle Scholar
  36. 36.
    M. Melucci, Introduction to Information Retrieval and Quantum Mechanics (Springer, Berlin Heidelberg, 2015)CrossRefGoogle Scholar
  37. 37.
    G. Sergioli, G.M. Bosyk, E. Santucci, R. Giuntini, Int. J. Theor. Phys. 56, 3880 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Busemeyer, Z. Wang, Theor. Comput. Sci. 752, 41 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Wendt, Quantum Mind and Social Science (Cambridge University Press, Cambridge, 2015)Google Scholar
  40. 40.
    K. Barad, Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning (Duke University Press, 2007)Google Scholar
  41. 41.
    M. Born, The Born-Einstein Letters 1916–1955 (Macmillan Press, New York, 1971)Google Scholar
  42. 42.
    D. Aerts, M. Sassoli de Bianchi, Ann. Phys. 351, 975 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    D. Aerts, M. Sassoli de Bianchi, J. Math. Phys. 57, 122110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    D. Aerts, M. Sassoli de Bianchi, Soft Comput. 21, 1483 (2017)CrossRefGoogle Scholar
  45. 45.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)Google Scholar
  47. 47.
    M. Genovese, Phys. Rep. 413, 319 (2005)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  49. 49.
    D. Aerts, Helv. Phys. Acta 57, 421 (1984)MathSciNetGoogle Scholar
  50. 50.
    D. Bohm, Quantum Theory (Prentice-Hall, New-York, 1951)Google Scholar
  51. 51.
    M. Sassoli de Bianchi, Found. Sci. 17, 223 (2012)MathSciNetCrossRefGoogle Scholar
  52. 52.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967)MathSciNetGoogle Scholar
  53. 53.
    S. Popescu, D. Rohrlich, Causality and Nonlocality as Axioms for Quantum Mechanics, in Causality and Locality in Modern Physics, Fundamental Theories of Physics (An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application), edited by G. Hunter, S. Jeffers, J.P. Vigier, Vol. 97 (Springer, Dordrecht, 1998) pp. 383--389CrossRefGoogle Scholar
  54. 54.
    A. Peres, D.R. Terno, Rev. Mod. Phys. 76, 93 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    G. Adenier, A. Khrennikov, J. Phys. B 40, 131 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    H. De Raedt, K. Michielsen, F. Jin, AIP Conf. Proc. 1424, 55 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    H. De Raedt, F. Jin, K. Michielsen, Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments, in Proceedings of SPIE, Vol. 8832, The Nature of Light: What are Photons? V (SPIE, 2013) 88321N,  https://doi.org/10.1117/12.2021860
  60. 60.
    G. Adenier, A. Khrennikov, Fortschr. Phys. 65, 1600096 (2017)CrossRefGoogle Scholar
  61. 61.
    A. Bednorz, Phys. Rev. A 95, 042118 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    M. Kupczynski, Open Phys. 15, 739 (2017)CrossRefGoogle Scholar
  63. 63.
    P.D. Bruza, K. Kitto, D. McEvoy, C. McEvoy, Entangling words and meaning, in Proceedings of the Second Quantum Interaction Symposium (Oxford University Press, Oxford, 2008) pp. 118--124Google Scholar
  64. 64.
    P.D. Bruza, K. Kitto, D. Nelson, C. McEvoy, Extracting spooky-activation-at-a-distance from considerations of entanglement, in Quantum Interaction 2009, Lecture Notes in Computer Science, Vol. 5494 (Springer, Berlin, 2009) pp. 71--83CrossRefGoogle Scholar
  65. 65.
    D. Aerts, S. Sozzo, Quantum structure in cognition. Why and how concepts are entangled, in Quantum Interaction 2011, lecture Notes in Computer Science, Vol. 7052 (Springer, Berlin, 2011) pp. 116--127CrossRefGoogle Scholar
  66. 66.
    D. Aerts, S. Sozzo, Int. J. Theor. Phys. 53, 3587 (2014)CrossRefGoogle Scholar
  67. 67.
    P. Bruza, K. Kitto, B. Ramm, L. Sitbon, J. Math. Psychol. 67, 26 (2015)CrossRefGoogle Scholar
  68. 68.
    G. Gronchi, E. Strambini, J. Math. Psychol. 78, 65 (2017)CrossRefGoogle Scholar
  69. 69.
    D. Aerts, J. Aerts Arguëlles, L. Beltran, S. Geriente, M. Sassoli de Bianchi, S. Sozzo, T. Veloz, Found. Sci. 23, 337 (2018)CrossRefGoogle Scholar
  70. 70.
    L. Beltran, S. Geriente, Found. Sci. 24, 227 (2018)CrossRefGoogle Scholar
  71. 71.
    E.N. Dzhafarov, J.V. Kujala, Topics Cogn. Sci. 6, 121 (2013)CrossRefGoogle Scholar
  72. 72.
    D. Aerts, Topics Cogn. Sci. 6, 129 (2014)CrossRefGoogle Scholar
  73. 73.
    V.H. Cervantes, E.N. Dzhafarov, Decision 5, 193 (2018)CrossRefGoogle Scholar
  74. 74.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  75. 75.
    B.S. Tsirelson, Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    D. Aerts, Lett. Nuovo Cimento 34, 107 (1982)CrossRefGoogle Scholar
  77. 77.
    D. Aerts, Helv. Phys. Acta 64, 1 (1991)MathSciNetGoogle Scholar
  78. 78.
    D. Aerts, S. Aerts, J. Broekaert, L. Gabora, Found. Phys. 30, 1387 (2000)MathSciNetCrossRefGoogle Scholar
  79. 79.
    D. Aerts, M. Sassoli de Bianchi, S. Sozzo, Front. Phys. 4, 17 (2016)CrossRefGoogle Scholar
  80. 80.
    O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    D. Aerts, An attempt to imagine parts of the reality of the micro-world, in Problems in Quantum Physics IIGoogle Scholar
  82. 82.
    J. Bell, J. Phys. Colloq. 42, C2-41 (1981)CrossRefGoogle Scholar
  83. 83.
    D. Aerts, S. Sozzo, Entanglement Zoo I: Foundational and Structural Aspects, in Quantum Interaction. QI 2013, edited by H. Atmanspacher, E. Haven, K. Kitto, D. Raine, Lect. Notes in Computer Science, Vol. 8369 (Springer, Berlin, Heidelberg, 2014) pp. 84--96Google Scholar
  84. 84.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    Yoon-Ho Kim, R. Yu, S.P. Kulik, Y.H. Shih, M.O. Scully, Phys. Rev. Lett. 84, 1 (2000)ADSCrossRefGoogle Scholar
  86. 86.
    S.P. Walborn, M.O. Terra Cunha, S. Pádua, C.H. Monken, Phys. Rev. A 65, 033818 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    D. Aerts, J. Math. Psychol. 53, 314 (2009)CrossRefGoogle Scholar
  88. 88.
    W. Thirring, R.A. Bertlmann, P. Köhler, H. Narnhofer, Eur. Phys. J. D 64, 181 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    N.L. Harshman, K.S. Ranade, Phys. Rev. A 84, 012303 (2011)ADSCrossRefGoogle Scholar
  90. 90.
    N.L. Harshman, AIP Conf. Proc. 1508, 386 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    M. Sassoli de Bianchi, Soft Comput. (2019)  https://doi.org/10.1007/s00500-019-04186-x
  92. 92.
    J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, N. Gisin, Nat. Phys. 8, 867 (2012)CrossRefGoogle Scholar
  93. 93.
    L.E. Ballentine, J.P. Jarrett, Am. J. Phys. 55, 696 (1987)ADSCrossRefGoogle Scholar
  94. 94.
    E.N. Dzhafarov, J.V. Kujala, J. Math. Psychol. 74, 11 (2016)ADSCrossRefGoogle Scholar
  95. 95.
    R. Schweickert, D.L. Fisher, K. Sung, Discovering Cognitive Architecture by Selectively Influencing Mental Processes (World Scientific, New Jersey, 2012)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • D. Aerts
    • 1
  • J. Aerts Arguëlles
    • 1
  • L. Beltran
    • 1
  • S. Geriente
    • 1
  • M. Sassoli de Bianchi
    • 1
    • 2
  • S. Sozzo
    • 3
    Email author
  • T. Veloz
    • 1
    • 4
    • 5
  1. 1.Center Leo ApostelBrussels Free UniversityBrusselsBelgium
  2. 2.Laboratorio di Autoricerca di BaseBarbengoSwitzerland
  3. 3.School of Business and Centre IQSCSUniversity of LeicesterLeicesterUK
  4. 4.Universidad Andres BelloDepartamento Ciencias Biológicas, Facultad Ciencias de la VidaSantiagoChile
  5. 5.Fundación para el Desarrollo Interdisciplinario de la Ciencia la Tecnología y las ArtesSantiagoChile

Personalised recommendations