Advertisement

Deposition of SnS thin films by chemical bath deposition method: Effect of surfactants

  • Imen Ammar
  • Abdelaziz GassoumiEmail author
  • Anis Akkari
  • Fabien Delpech
  • Souad Ammar
  • Najoua Turki-Kamoun
Regular Article

Abstract.

Tin sulfide (SnS) thin films were obtained by chemical bath deposition (CBD) using two surfactants: anionic sodium dodecylsulfate (SDS) and cationic benzethonium chloride (BZC). The structural, morphological, chemical composition and optical properties of thin films were analyzed by using XRD, MEB, EDX, and spectrophotometer. The degradation efficiency of SnS films CBD grown without surfactant after 4h was found to be 65%, while it was for SnS grown with surfactant 83% for SnS(BZC) and 88% for SnS(SDS). The energy band gap values are found to be enhanced from 1.48eV for as deposited SnS thin film 1.44eV for SnS(BZC) and 1.41eV for SnS(SDS). The results demonstrated that tin sulfide (SnS) thin films have the potential to be used for optoelectronic applications.

Notes

References

  1. 1.
    M. Reghima, A. Akkari, C. Guasch, N. Turki-Kamoun, J. Electron. Mater. 43, 3138 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Reghima, A. Akkari, C. Guasch, N. Kamoun-Turki, J. Renew. Sustain. Energy 4, 011602 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, ACS Nano 6, 6197 (2012)CrossRefGoogle Scholar
  4. 4.
    N.P. Klochko, O.V. Lukianova, V.R. Kopach, I.I. Tyukhov, N.D. Volkova, G.S. Khrypunov, V.M. Lyubov, M.M. Kharchenko, M.V. Kirichenko, Sol. Energy 134, 156 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Jayalakshmi II, M.M. Rao, B.M. Choudary, Electrochem. Commun. 6, 1119 (2004)CrossRefGoogle Scholar
  6. 6.
    J.G. Kang, J.G. park, D.W. Kim, Electrochem. Commun. 120, 307 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Fang, T. Zhai, UK. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Yao, J. Li, S. Shan, Q. Jia, Catal. Commun. 101, 51 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M. Liu, L. Wang, L. Zhou, Nano Res. 10, 218 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, Y. Tong, Mater. Lett. 65, 450 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Chao, Z. Wang, X. Xu, Q. Xiang, W. Song, G. Chen, J. Hu, D. Chen, RSC Adv. 3, 2746 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Sohilaa, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011)CrossRefGoogle Scholar
  13. 13.
    P.C. Huang, Y.M. Shen, S. Brahma, M.O. Shaikh, J.L. Huang, S.C. Wang, Catalysts 7, 252 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Fu, J. Mater. Chem. C 6, 414 (2018)CrossRefGoogle Scholar
  15. 15.
    P.K. Nair, A.R. Garcia-Angelmo, M.T.S. Nair, Phys. Status Solidi (a) 213, 170 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Duta, D. Perniua, A. Duta, Appl. Surf. Sci. 306, 80 (2014)CrossRefGoogle Scholar
  17. 17.
    A.L. Anderson, R. Binions, Coatings 4, 796 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Haspulat, M. Saribel, H. Kamiş, Arab. J. Chem. (2017)  https://doi.org/10.1016/j.arabjc.2017.02.004
  19. 19.
    C.D. Pomar, A.T. Souza, G. Sombrio, F.L. Souza, J. Bonvent, J.A. Souza, Chem. Select 3, 3774 (2018)Google Scholar
  20. 20.
    L. Xu, L. Ma, X. Xu, X. Zhou, L. Zhang, Chem. Lett. 45, 688 (2016)CrossRefGoogle Scholar
  21. 21.
    E. Turan, M. Kul, A.S. Aybek, M. Zor, J. Phys. D 42, 245408 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    N.R. Mathews, C.C. Garcia, I.Z. Torres, Mater. Sci. Semiconduct. Process. 29, 16 (2013)Google Scholar
  23. 23.
    S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Shevtsova, P.P. Gladyshev, Thin Solid Films 585, 40 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    C.M. Muiva, A.O. Juma, L.M. Lepodise, K. Maabong, D. Letsholathebe, Mater. Sci. Semiconduct. Process. 67, 69 (2017)CrossRefGoogle Scholar
  25. 25.
    G.H. Tariq, K. Hutchings, G. Asghar, D.W. Lane, M. Anis-Ur-Rehman, J. Ovonic Res. 10, 247 (2014)Google Scholar
  26. 26.
    A. Akkari, M. Reghima, C. Guasch, N. Kamoun-Turki, J. Mater. Sci. 47, 1365 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J.H. Liu, G.F. Huang, W.Q. Huang, H. Miao, B.X. Zhou, Mater. Lett. 161, 480 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, F. Abeles (Editors), Optical Properties of Solids (IOP Publishing Ltd., North Holland, Amsterdam, 1970) p. 903Google Scholar
  29. 29.
    C. Nefzi, M. Souli, N. Beji, A. Mejri, N. Kamoun-Turki, J. Mater. Sci. 52, 336 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    S.J. Ikhmayiesa, R.N. Ahmad-Bitarb, J. Mater. Res. Technol. 2, 221 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Jrad, W. Naffouti, T. Ben Nasr, N. Turki-Kamoun, J. Lumin. 173, 135 (2016)CrossRefGoogle Scholar
  32. 32.
    A.E. Abdelrahman, W.M.M. Yunus, A.K. Arof, J. Non-Cryst. Solids 358, 1447 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Imen Ammar
    • 1
  • Abdelaziz Gassoumi
    • 2
    Email author
  • Anis Akkari
    • 1
  • Fabien Delpech
    • 3
  • Souad Ammar
    • 4
  • Najoua Turki-Kamoun
    • 1
  1. 1.Université de Tunis El ManarFaculté des Sciences de Tunis, Laboratoire de Physique de la Matière CondenséeTunisTunisia
  2. 2.King Khalid UniversityFaculty of Science, Department of PhysicsAbhaSaudi Arabia
  3. 3.Université de ToulouseINSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-ObjetsToulouse, Cedex 4France
  4. 4.Université Paris DiderotSPC, CNRS, (UMR 7086), ITODYSParisFrance

Personalised recommendations