Magnetocaloric effect simulation by Landau theory and mean-field approximation in Pr0.5Sr0.5MnO3
Regular Article
First Online:
- 11 Downloads
Abstract.
The magnetocaloric effect in Pr0.5Sr0.5MnO3 (PSMO) has been successfully modeled in this work. PSMO undergoes a first-order antiferromagnetic charge ordering (AFM/CO) to a ferromagnetic (FM) transition at \( T_{CO}=T_{N}\sim 165\) K followed by a second-order ferromagnetic (FM) to paramagnetic (PM) transition at the Curie temperature, \( T_{C}\sim 255\) K. The magnetocaloric effect in PSMO has been studied by the simulation of the magnetic entropy change \( (-\Delta S_M)\) for these two transitions by developing a numerical approach based on the Landau free energy within the mean-field approximation. Simulated results agree well with the experimental ones for these two transitions.
References
- 1.E. Palacios, C. Tomasi, R. Sáez-Puche, A.J. Dos Santos-García, F. Fernández- Martínez, R. Burriel, Phys. Rev. B 93, 064420 (2016)CrossRefADSGoogle Scholar
- 2.K.P. Skokov, D.Y. Karpenkov, M.D. Kuzmin, I.A. Radulov, T. Gottschall, B. Kaeswurm, M. Fries, O. Gutfleisch, J. Appl. Phys. 115, 17 (2014)CrossRefGoogle Scholar
- 3.W. Xia, J.H. Huang, N.K. Sun, C.L. Lui, Z.Q. Ou, L. Song, J. Alloys Compd. 635, 124 (2015)CrossRefGoogle Scholar
- 4.Y.K. Zhang, B. Yang, G. Wilde, J. Alloys Compd. 619, 12 (2015)CrossRefGoogle Scholar
- 5.M. Balli, B. Roberge, S. Jandl, P. Fournier, T.T.M. Palstra, A.A. Nugroho, J. Appl. Phys. 118, 073903 (2015)CrossRefADSGoogle Scholar
- 6.Y.J. Ke, X.Q. Zhang, H. Ge, Y. Ma, Z.H. Cheng, Chin. Phys. B 24, 037501 (2015)CrossRefADSGoogle Scholar
- 7.E. Brück, J. Phys D 38, R381 (2005)CrossRefADSGoogle Scholar
- 8.N.A. de Oliveira, P.J. von Ranke, Phys. Rep. 489, 89 (2010)CrossRefADSGoogle Scholar
- 9.Z.J. Mo, J. Shen, L.Q. Yan, C.C. Tang, J. Lin, J.F. Wu et al., Appl. Phys. Lett. 103, 052409 (2013)CrossRefADSGoogle Scholar
- 10.S. Gupta, K.G. Suresh, Mater. Lett. 113, 195 (2013)CrossRefGoogle Scholar
- 11.A. Midya, N. Khan, D. Bhoi, P. Mandal, Appl. Phys. Lett. 103, 092402 (2013)CrossRefADSGoogle Scholar
- 12.N.S. Bingham, M.H. Phan, H. Srikanth, M.A. Torija, C. Leighton, J. Appl. Phys. 106, 023909 (2009)CrossRefADSGoogle Scholar
- 13.M. Bourouina, A. Krichene, N. Chniba Boudjada, M. Khitouni, W. Boujelben, Ceram. Int. 43, 8139 (2017)CrossRefGoogle Scholar
- 14.V.S. Amaral, J.S. Amaral, J. Magn. & Magn. Mater. 272--276, 2104 (2004)CrossRefADSGoogle Scholar
- 15.M. Hsini, S. Hcini, S. Zemni, M. Boudard, J. Supercond. Nov. Magn. 31, 81 (2017)CrossRefGoogle Scholar
- 16.M. Hsini, S. Hcini, S. Zemni, J. Magn. & Magn. Mater. 466, 368 (2018)CrossRefADSGoogle Scholar
- 17.M. Balli, D. Fruchart, D. Gignoux, R. Zach, Appl. Phys. Lett. 95, 072509 (2009)CrossRefADSGoogle Scholar
- 18.J.S. Amaral, M.S. Reis, V.A. Amaral, T.M. Mendonca, J.P. Araú ji, M.A. Sa, P.B. Tvares, J.M. Vieira, J. Magn. & Magn. Mater. 290, 686 (2005)CrossRefADSGoogle Scholar
- 19.Q.Y. Dong, H.W. Zhang, J.L. Shen, J.R. Sun, B.G. Shen, J. Magn. & Magn. Mater. 319, 56 (2007)CrossRefADSGoogle Scholar
- 20.X.B. Liu, D.H. Ryan, Z. Altounian, J. Magn. & Magn. Mater. 270, 305 (2004)CrossRefADSGoogle Scholar
- 21.S. Das, T.K. Dey, Mater. Chem. Phys. 108, 220 (2008)CrossRefGoogle Scholar
- 22.J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Phys. B 406, 2289 (2011)CrossRefADSGoogle Scholar
- 23.S. Das, T.K. Dey, J. Phys.: Condens. Matter 18, 7629 (2006)ADSGoogle Scholar
- 24.S. Das, T.K. Dey, J. Phys. D 40, 1855 (2007)CrossRefADSGoogle Scholar
- 25.S. Das, T.K. Dey, J. Alloys Compd. 440, 30 (2007)CrossRefGoogle Scholar
- 26.Mariathas Judes Tagore, Landau Theory of the Structural Phase Transition in AntiFM CuFeO_2 (Canada, 2008)Google Scholar
- 27.V.S. Amaral, J.P. Araújo, Yu.G. Pogorelov, J.B. Sousa, P.B. Tavares et al., J. Appl. Phys. 93, 7646 (2003)CrossRefADSGoogle Scholar
- 28.Rafael Agra et al., Eur. J. Phys. 27, 407 (2006)CrossRefGoogle Scholar
Copyright information
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019