Advertisement

Experimental models to estimate supercooling behavior of ZrO2 nanofluid phase change materials

  • Hoda AslaniEmail author
  • Mohammad Moghiman
Regular Article
  • 5 Downloads

Abstract.

The present research experimentally introduces novel corrective models to facilitate comparison and evaluation of the supercooling degree and critical nucleation radius of nanofluid phase change materials with surfactant. A dimensionless number (C parameter) is applied in the predictive models considering the essential thermophysical properties effective on solidification behavior (i.e., thermal conductivity, kinematic viscosity and surface tension). Based on theoretical analysis, the C parameter is defined and finally validated with experimental data. It is found that the models are capable of precise estimation. It is also observed that the C parameter is an effective factor on ratios of solidification characteristics, such as ratios of supercooling degree and critical nucleation radius, which can be extended to other characteristics.

Notes

References

  1. 1.
    V. Kumaresan, P. Chandrasekaran, M. Nanda, A.K. Maini, R. Velraj, Int. J. Refrig. 36, 1641 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Mo, Y. Chen, Zh. Cheng, L. Jia, X. Luo, X. Shao, X. Yuan, G. Lin, Thermochim. Acta 605, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    N.L. Narasimhan, R. Bharath, S.A. Ramji, M. Tarun, S. Arumugam, Int. J. Therm. Sci. 84, 184 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Chandrasekaran, M. Cheralathan, V. Kumaresan, R. Velraj, Energy 72, 636 (2014)CrossRefGoogle Scholar
  5. 5.
    S.L. Chen, Ch.L. Chen, Ch.Ch. Tin, T.Sh. Lee, M.Ch. Ke, Exp. Therm. Fluid Sci. 23, 133 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Harikrishnan, S. Magesh, S. Kalaiselvam, Thermochim. Acta 565, 137 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Fan, J.M. Khodadadi, Int. J. Therm. Sci. 62, 120 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Hossain, Sh. Mahmud, A. Dutta, I. Pop, Int. J. Therm. Sci. 91, 49 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Sheikholeslami, M. Jafaryar, A. Shafee, Zhi Li, Physica A 523, 544 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    T.P. Teng, Energy Convers. Manag. 67, 369 (2013)CrossRefGoogle Scholar
  11. 11.
    A.A. Altohamy, M.F. Abd Rabbo, R.Y. Sakr, A.A. Attia, Appl. Therm. Eng. 84, 331 (2015)CrossRefGoogle Scholar
  12. 12.
    Sh. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermochim. Acta 483, 73 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Jia, L. Peng, Y. Chen, S. Mo, X. Li, Appl. Energy 124, 248 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. He, Sh. Wang, M. Tong, Y. Liu, Energy Convers. Manag. 64, 199 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Mo, Y. Chen, L. Jia, X. Luo, Appl. Energy 93, 65 (2012)CrossRefGoogle Scholar
  16. 16.
    X.J. Wang, X.F. Li, Y.H. Xu, D.S. Zhu, Energy 78, 212 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, X. Li, P. Hu, G.A. Hu, Int. J. Refrig. 50, 80 (2015)CrossRefGoogle Scholar
  18. 18.
    L.W. Fan, X.L. Yao, X. Wang, Y.Y. Wu, X.L. Liu, X. Xu, Z.T. Yu, Appl. Energy 138, 193 (2015)CrossRefGoogle Scholar
  19. 19.
    U.N. Temel, K. Somek, M. Parlak, K. Yapici, J. Therm. Anal. Calorim. 133, 907 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Chandrasekaran, M. Cheralathan, V. Kumaresan, R. Velraj, Int. J. Refrig. 41, 157 (2014)CrossRefGoogle Scholar
  21. 21.
    U.N. Temel, S. Kurtulus, M. Parlak, K. Yapici, J. Therm. Anal. Calorim. 132, 631 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Aslani, M. Moghiman, Int. J. Refrig. 89, 40 (2018)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, X. Wu, J. Min, Exp. Therm Fluid Sci. 88, 1 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    A. Zabalegui, Dh. Lokapur, H. Lee, Int. J. Heat Mass Transfer 78, 1145 (2014)CrossRefGoogle Scholar
  25. 25.
    J.M. Khodadadi, L. Fan, H. Babaei, Renew. Sustain. Energy Rev. 24, 418 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Moghiman, B.H. Aslani, Int. J. Heat Mass Transfer 61, 114 (2013)CrossRefGoogle Scholar
  27. 27.
    B. White, S. Banerjee, S. O'Brien, N.J. Turro, I.P. Herman, J. Phys. Chem. C 111, 13684 (2007)CrossRefGoogle Scholar
  28. 28.
    W.C. Williams, J. Buongiorno, L.W. Hu, J. Heat Transf. 130, 424121 (2008)CrossRefGoogle Scholar
  29. 29.
    K.A.R. Ismail, L.M.S. Filho, F.A.M. Lino, Int. J. Heat Mass Transfer 55, 1823 (2012)CrossRefGoogle Scholar
  30. 30.
    W.S. Khan, N.N. Hamadneh, W.A. Khan, PLoS ONE 12, 1 (2017)Google Scholar
  31. 31.
    O. Mahian, L. Kolsi, M. Amani et al., Phys. Rep. 790, 1 (2019)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X.J. Zhang, P. Wu, L.M. Qiu, X.B. Zhang, X.J. Tian, Energy Convers. Manag. 51, 130 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Sathishkumar, V. Kumaresan, R. Velraj, Int. J. Refrig. 66, 73 (2016)CrossRefGoogle Scholar
  34. 34.
    T. Borzsonyi, A. Buka, L. Kramer, Phys. Rev. E 58, 6236 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    R.H. Chen, T.X. Phuoc, D. Martello, Int. J. Heat Mass Transfer 54, 2459 (2011)CrossRefGoogle Scholar
  36. 36.
    K. Jagannadham, J. Appl. Phys. 110, 074901 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    E.J. Tervo, O.S. Adewuyi, J.S. Hammonds, B.A. Cola, Mater. Horiz. 3, 434 (2016)CrossRefGoogle Scholar
  38. 38.
    Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Bhosle, Nanotextured Titanium Surfaces for Implants: Manufacturing and Packaging Aspects, open access dissertation (Michigan Technological University, 2017)Google Scholar
  40. 40.
    M.H. Esfe, S. Saedodin, O. Mahian, S. Wongwises, J. Therm. Anal. Calorim. 117, 675 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations