On non-linear Schrödinger equations for open quantum systems

  • S. V. MousaviEmail author
  • S. Miret-Artés
Regular Article


Recently, two generalized nonlinear Schrödinger equations have been proposed by Chavanis (Eur. Phys. J. Plus 132, 286 (2017)) by applying Nottale's theory of scale relativity relying on a fractal space-time to describe dissipation in quantum systems. Several existing nonlinear equations are then derived and discussed in this context leading to a continuity equation with an extra source/sink term which violates Ehrenfest theorem. An extension to describe stochastic dynamics is also carried out by including thermal fluctuations or noise of the environment. These two generalized nonlinear equations are analyzed within the Bohmian mechanics framework to describe the corresponding dissipative and stochastic dynamics in terms of quantum trajectories. Several applications of this second generalized equation which can be considered as a generalized Kostin equation have been carried out. The first application consists of the study of the position-momentum uncertainty principle in a dissiaptive dynamics. After, the so-called Brownian-Bohmian motion is investigated by calculating classical and quantum diffusion coefficients. And as a third example, transmission through a transient (time-dependent) parabolic repeller is studied where the interesting phenomenon of early arrival is observed even in the stochastic dynamics although the magnitude of early arrival is reduced by friction.


  1. 1.
    A.B. Nassar, S. Miret-Artés, Bohmian Mechanics, Open Quantum Systems and Continuous Measurements (Springer, 2017)Google Scholar
  2. 2.
    J.M.F. Bassalo, D.G. da Silva, A.B. Nassar, M.S.D. Cattani, J. Adv. Math. Appl. 1, 89 (2012)CrossRefGoogle Scholar
  3. 3.
    I. Bialynicki-Birula, J. Mycielski, Ann. Phys. 100, 62 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    H. Bateman, Phys. Rev. 38, 815 (1931)ADSCrossRefGoogle Scholar
  5. 5.
    P. Caldirola, Nuovo Cimento 18, 393 (1941)CrossRefGoogle Scholar
  6. 6.
    E. Kanai, Prog. Theor. Phys. 3, 440 (1948)ADSCrossRefGoogle Scholar
  7. 7.
    L. Diósi, J.J. Halliwell, Phys. Rev. Lett. 81, 2846 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M.D. Kostin, J. Chem. Phys. 57, 3589 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    D. Schuch, K.-M. Chung, H. Hartmann, J. Math. Phys. 24, 1652 (1983)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Schuch, Int. J. Quantum Chem. 72, 537 (1999)CrossRefGoogle Scholar
  11. 11.
    D. Süssmann, Seminar talk at Los Alamos (1973)Google Scholar
  12. 12.
    R.W. Hasse, J. Math. Phys. 16, 1975 (2005)Google Scholar
  13. 13.
    K. Albrecht, Phys. Lett. B 56, 127 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Kostin, J. Stat. Phys. 12, 146 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    A.B. Nassar, J. Math. Phys. 27, 2949 (1986)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.B. Nassar, Int. J. Theor. Phys. 46, 548 (2007)CrossRefGoogle Scholar
  17. 17.
    A.B. Nassar, S. Miret-Artés, Phys. Rev. Lett. 111, 150401 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    P.H. Chavanis, Eur. Phys. J. Plus 132, 286 (2017)CrossRefGoogle Scholar
  19. 19.
    L. Nottale, Scale Relativity and Fractal Space-Time (Imperial College Press, 2011)Google Scholar
  20. 20.
    P. Bargueño, S. Miret-Artés, Ann. Phys. 346, 59 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A.F. Vargas, N. Morales-Durán, P. Bargueño, Ann. Phys. 356, 498 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    E. Nelson, Phys. Rev. 150, 1079 (1966)ADSCrossRefGoogle Scholar
  23. 23.
    R.K. Pathria, Statistical Mechanics (Pergamon Press, Toronto, 1972)Google Scholar
  24. 24.
    L.E. Ballentine, Yumin Yang, J.P. Zibin, Phys. Rev. A 50, 2854 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, 1993)Google Scholar
  26. 26.
    D. Dürr, S. Goldstein, N. Zanghi, J. Stat. Phys. 68, 259 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    D.H. Kobe, J. Phys. A 40, 5155 (2007)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 134, 311 (2019)CrossRefGoogle Scholar
  29. 29.
    X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Phys. Rev. Lett. 104, 063002 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D. Home, A.S. Majumdar, A. Matzkin, J. Phys. A: Math. Theor. 45, 295301 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Bandyopadhyay, A.S. Majumdar, D. Home, Phys. Rev. A 65, 052718 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Ali Md Manirul, A.S. Majumdar, D. Home, Phys. Lett. A 304, 61 (2002)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    H. Karami, S.V. Mousavi, Can. J. Phys. 93, 413 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of QomQomIran
  2. 2.Instituto de Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations