Advertisement

Numerical solution of the nonlinear diffusion equation by using non-standard/standard finite difference and Fibonacci collocation methods

  • Kushal Dhar DwivediEmail author
  • S. Das
Regular Article

Abstract.

In this article, the authors have introduced a new nonstandard/standard finite difference scheme with the Fibonacci polynomial. The considered nonlinear fractional diffusion equation is reduced into a system of linear ordinary differential equations which are solved by using nonstandard/standard finite difference method. The developed schemes are unconditionally stable and the effectiveness and efficiency of the method is confirmed by applying it in two linear and one nonlinear problems and through comparison of their numerical results with existing analytical results. After validation of the efficiency of the method, the proposed method is used to solve the highly nonlinear fractional order diffusion equation. The stability of the method is also discussed. The salient feature of the article is the graphical exhibitions of the effects on the solute profiles due to increasing in non-linearity of the model and of the order of the spatial derivative for different particular cases.

References

  1. 1.
    B. Carreras, V. Lynch, G. Zaslavsky, Phys. Plasmas 8, 5096 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Kenneth S. Miller, Bertram Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, 1993)Google Scholar
  3. 3.
    O.P. Agrawal, Nonlinear Dyn. 38, 323 (2004)CrossRefGoogle Scholar
  4. 4.
    M.S. Azad, J.J. Trivedi, Fuel 235, 218 (2019)CrossRefGoogle Scholar
  5. 5.
    A. Akgül, M. Modanli, Chaos, Solitons Fractals 127, 10 (2019)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E.K. Akgül, Chaos 29, 023108 (2019)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Akgül, A. Cordero, J.R. Torregrosa, Appl. Math. Lett. 98, 344 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Akgül, in Fractional Derivatives with Mittag-Leffler Kernel (Springer, 2019) pp. 1--12Google Scholar
  9. 9.
    A. Akgül, Chaos, Solitons Fractals 114, 478 (2018)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A.R. Kanth, N. Garg, Eur. Phys. J. Plus 134, 312 (2019)CrossRefGoogle Scholar
  11. 11.
    A.M. Tawfik, H. Fichtner, A. Elhanbaly, R. Schlickeiser, Eur. Phys. J. Plus 133, 209 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Sheikholeslami, Comput. Methods Appl. Mech. Eng. 344, 319 (2019)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Crevillén-García, P. Leung, A. Rodchanarowan, A. Shah, Transp. Porous Media 126, 79 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Matheron, G. De Marsily, Water Resour. Res. 16, 901 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    S.Z. Alamri, R. Ellahi, N. Shehzad, A. Zeeshan, J. Mol. Liq. 273, 292 (2019)CrossRefGoogle Scholar
  16. 16.
    H. Rusinque, G. Brenner, Microporous Mesoporous Mater. 280, 157 (2019)CrossRefGoogle Scholar
  17. 17.
    A. Cartalade, A. Younsi, M.C. Néel, Comput. Phys. Commun. 234, 40 (2019)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    X. Xiao, K. Wang, X. Feng, Comput. Phys. Commun. 231, 107 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S.B. Yuste, J. Quintana-Murillo, Comput. Phys. Commun. 183, 2594 (2012)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Atangana, J. Botha, J. Earth Sci. Clim. Change 3, 115 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Atangana, J. Comput. Phys. 293, 104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Pandey, S. Kumar, S. Das, Eur. Phys. J. Plus 134, 364 (2019)CrossRefGoogle Scholar
  23. 23.
    M. Javidi, Appl. Math. Comput. 174, 345 (2006)MathSciNetGoogle Scholar
  24. 24.
    C.G. Zhu, W.S. Kang, Appl. Math. Comput. 216, 2679 (2010)MathSciNetGoogle Scholar
  25. 25.
    M. Rashidi, D. Ganji, S. Dinarvand, Numer. Methods Partial Differ. Equ. 25, 409 (2009)CrossRefGoogle Scholar
  26. 26.
    R. FitzHugh, Biophys. J. 1, 445 (1961)ADSCrossRefGoogle Scholar
  27. 27.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)CrossRefGoogle Scholar
  28. 28.
    H. Li, Y. Guo, Appl. Math. Comput. 180, 524 (2006)MathSciNetGoogle Scholar
  29. 29.
    M. Shih, E. Momoniat, F. Mahomed, J. Math. Phys. 46, 023503 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Abbasbandy, Appl. Math. Model. 32, 2706 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations (World Scientific, 1994)Google Scholar
  32. 32.
    R.E. Mickens, Appl. Numer. Math. 45, 309 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Buckmire, Numer. Methods Partial Differ. Equ. 20, 327 (2004)MathSciNetCrossRefGoogle Scholar
  34. 34.
    P.K. Pandey, Int. J. Math. Model. Comput. 5, 259 (2015)Google Scholar
  35. 35.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 (Elsevier, 1998)Google Scholar
  36. 36.
    R.E. Mickens, Numer. Methods Partial Differ. Equ. 5, 313 (1989)MathSciNetCrossRefGoogle Scholar
  37. 37.
    R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientific, 2000)Google Scholar
  38. 38.
    V.F. Morales-Delgado, J.F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2016, 164 (2016)CrossRefGoogle Scholar
  39. 39.
    P.F. Byrd, Fibonacci Q. 1, 16 (1963)Google Scholar
  40. 40.
    N. Sweilam, A. Nagy, A.A. El-Sayed, Chaos, Solitons Fractals 73, 141 (2015)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Agarwal, A. El-Sayed, Physica A: Stat. Mech. Appl. 500, 40 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    O.E. Hepson, AIP Conf. Proc. 1978, 470100 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical Sciences IIT(BHU)VaranasiIndia

Personalised recommendations