Advertisement

Possibility of \( \rho\) meson condensation in neutron stars: Unified approach of chiral SU(3) model and QCD sum rules

  • Shivam
  • Arvind KumarEmail author
Regular Article

Abstract.

In the present work the conjunction of chiral SU(3) model with QCD sum rules is employed to explore the possibility of \( \rho\) meson condensation in neutron stars. The quark and gluon condensates in terms of which the in-medium masses of \( \rho\) mesons can be expressed are calculated using the chiral SU(3) model in the charge neutral matter which is relevant for neutron stars. We observe that the condition of \( \rho\) meson condensation is satisfied for the density of about 7\( \rho_{{0}}^{}\) , where \( \rho_{{0}}^{}\) is the nuclear saturation density. We also observe that the medium modified mass of \( \rho\) meson is found to have a considerable effect on the mass-radius relationship of neutron star. In the end, a brief qualitative discussion of the magnetic field is also involved to search for further possibilities of \( \rho\) meson condensation.

References

  1. 1.
    E. Annala et al., Phys. Rev. Lett. 120, 172703 (2018)CrossRefADSGoogle Scholar
  2. 2.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)CrossRefADSGoogle Scholar
  3. 3.
    R. Nandi, arXiv:1809.07108Google Scholar
  4. 4.
    Benjamin D. Lackey, Leslie Wade, Phys. Rev. D 91, 043002 (2015)CrossRefADSGoogle Scholar
  5. 5.
    Hyun Kyu Lee, Phys. Part. Nucl. Lett. 15, 343 (2018)CrossRefADSGoogle Scholar
  6. 6.
    W.C.G. Ho, Philos. Trans. R. Soc. A 376, 20170285 (2018)CrossRefADSGoogle Scholar
  7. 7.
    K.C. Gendreau et al., Proc. SPIE 9905, 99051H (2016)CrossRefGoogle Scholar
  8. 8.
    M. Baubock, D. Psaltis, F. Ozel, Astrophys. J. 811, 144 (2015)CrossRefADSGoogle Scholar
  9. 9.
    M.C. Miller, Astrophys. J. 822, 27 (2016)CrossRefADSGoogle Scholar
  10. 10.
    F. Ozel, D. Psaltis,, Z. Arzoumanian, S. Morsink, M. Baubock, Astrophys. J. 832, 92 (2016)CrossRefADSGoogle Scholar
  11. 11.
    S. Bogdanov, J.E. Grindlay, G.B. Rybicki, Astrophys. J. 689, 407 (2008)CrossRefADSGoogle Scholar
  12. 12.
    A.L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016)CrossRefADSGoogle Scholar
  13. 13.
    B.P. Abbott et al., Phys. Rev. Lett. 116, 131103 (2016)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    LIGO Scientific Collaboration and Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 241103 (2016)CrossRefADSGoogle Scholar
  15. 15.
    LIGO Scientific Collaboration and Virgo Collaboration (B.P. Abbott et al.), Astrophys. J. Lett. 818, L22 (2016)CrossRefADSGoogle Scholar
  16. 16.
    B. Iyer, LIGO Public Documents, https://dcc.ligo.org/public/0075/M1100296/002/LIGOIndia lw-v2.pdf (2011)
  17. 17.
    J. Hough, Proposal for a Joint German-British Interferometric Gravitational Wave Detector, eprints.gla.ac.uk/114852/7/114852.pdfGoogle Scholar
  18. 18.
    Gordon Baym et al., Rep. Prog. Phys. 81, 056902 (2018)CrossRefADSGoogle Scholar
  19. 19.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)CrossRefADSGoogle Scholar
  20. 20.
    P. Yue, H. Shen, Phys. Rev. C 74, 045807 (2006)CrossRefADSGoogle Scholar
  21. 21.
    P.A.M. Guichon, Phys. Lett. B 200, 235 (1988)CrossRefADSGoogle Scholar
  22. 22.
    S.W. Hong, B.K. Jennings, Phys. Rev. C 64, 038203 (2001)CrossRefADSGoogle Scholar
  23. 23.
    K. Tsushima et al., Phys. Rev. C 59, 2824 (1999)CrossRefADSGoogle Scholar
  24. 24.
    A. Sibirtsev et al., Eur. Phys. J. A 6, 351 (1999)CrossRefADSGoogle Scholar
  25. 25.
    P.K. Panda et al., Phys. Rev. C 56, 3134 (1997)CrossRefADSGoogle Scholar
  26. 26.
    S. Chatterjee, K.A. Mohan, Phys. Rev. D 85, 074018 (2012)CrossRefADSGoogle Scholar
  27. 27.
    B.J. Schaefer et al., Phys. Rev. D 81, 074013 (2010)CrossRefADSGoogle Scholar
  28. 28.
    V. Dexheimer, Pub. Astron. Soc. Australia 34, e066 (2017)CrossRefADSGoogle Scholar
  29. 29.
    G.E. Brown, K. Kubodera, M. Rho, V. Thorsson, Phys. Lett. B 291, 355 (1992)CrossRefADSGoogle Scholar
  30. 30.
    S. Mallik, A. Nyffeler, Phys. Rev. C 63, 065204 (2001)CrossRefADSGoogle Scholar
  31. 31.
    L. Tolos et al., Phys. Rev. C 763, 025203 (2004)CrossRefADSGoogle Scholar
  32. 32.
    L. Tolos et al., Phys. Lett. B 635, 85 (2006)CrossRefADSGoogle Scholar
  33. 33.
    L. Tolos et al., Phys. Rev. C 77, 015207 (2008)CrossRefADSGoogle Scholar
  34. 34.
    J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763, 90 (2005)CrossRefADSGoogle Scholar
  35. 35.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)CrossRefADSGoogle Scholar
  36. 36.
    K. Fukushima, Phys. Lett. B 591, 277 (2004)CrossRefADSGoogle Scholar
  37. 37.
    K. Kashiwa et al., Phys. Lett. B 662, 26 (2008)CrossRefADSGoogle Scholar
  38. 38.
    S.K. Ghosh et al., Phys. Rev. D 91, 054005 (2015)CrossRefADSGoogle Scholar
  39. 39.
    D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986) 179CrossRefADSGoogle Scholar
  40. 40.
    Subrata Pal, Debades Bandyopadhyay, Walter Greiner, Nucl. Phys. A 674, 553 (2000)CrossRefADSGoogle Scholar
  41. 41.
    D.B. Kaplan, A.E. Nelson, Nucl. Phys. A 479, 273c (1988)CrossRefADSGoogle Scholar
  42. 42.
    A. Kumar, Adv. High Energy Phys. 2014, 549726 (2014)CrossRefGoogle Scholar
  43. 43.
    T. Hatsuda et al., Phys. Rev. C 52, 3364 (1995)CrossRefADSGoogle Scholar
  44. 44.
    Y. Koike, A. Hayashigaki, Prog. Theor. Phys. 98, 3 (1997)CrossRefGoogle Scholar
  45. 45.
    M. Asakawa, C.M. Ko, Phys. Rev. C 48, 256 (1993)CrossRefGoogle Scholar
  46. 46.
    E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 759, 373 (2005)CrossRefADSGoogle Scholar
  47. 47.
    R. Mallick et al., Mon. Not. R. Astron. Soc. 449, 1347 (2015)CrossRefADSGoogle Scholar
  48. 48.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 092301 (2004)CrossRefGoogle Scholar
  49. 49.
    G. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995)CrossRefADSGoogle Scholar
  50. 50.
    W. Casing, W. Ehehalt, C.M. Ko, Phys. Lett. B 363, 35 (1995)CrossRefADSGoogle Scholar
  51. 51.
    J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996)CrossRefADSGoogle Scholar
  52. 52.
    N.K. Glendenning, J. Schaffner-Bielich, Phys. Rev. C 60, 025803 (1998)CrossRefADSGoogle Scholar
  53. 53.
    Stefan Leupold, Phys. Rev. C 64, 015202 (2001)CrossRefGoogle Scholar
  54. 54.
    Y. Koike, Phys. Rev. C 51, 3 (1995)CrossRefGoogle Scholar
  55. 55.
    F. Klingl, N. Kaiser, W. Weise, Nucl. Phys. A 624, 527 (1997)CrossRefADSGoogle Scholar
  56. 56.
    V. Dexheimer, S. Schramm, Astrophys. J. 683, 943 (2008)CrossRefADSGoogle Scholar
  57. 57.
    M. Hanauske et al., Astrophys. J. 537, 958 (2000)CrossRefADSGoogle Scholar
  58. 58.
    P. Papazoglou et al., Phys. Rev. C 59, 411 (1999)CrossRefADSGoogle Scholar
  59. 59.
    A. Mishra et al., Eur. Phys. J. A 45, 169 (2010)CrossRefADSGoogle Scholar
  60. 60.
    P. Papazoglou et al., Phys. Rev. C 57, 2576 (1998)CrossRefADSGoogle Scholar
  61. 61.
    A. Mishra et al., Phys. Rev. C 69, 024903 (2004)CrossRefADSGoogle Scholar
  62. 62.
    A. Kumar, R. Chhabra, Phys. Rev. C 92, 035208 (2015)CrossRefADSGoogle Scholar
  63. 63.
    J. Schechter, Phys. Rev. D 21, 3393 (1980)CrossRefADSGoogle Scholar
  64. 64.
    P. Wang et al., Phys. Rev. C 67, 015210 (2003)CrossRefADSGoogle Scholar
  65. 65.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)CrossRefADSGoogle Scholar
  66. 66.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)CrossRefADSGoogle Scholar
  67. 67.
    A. Kumar, A. Mishra, Phys. Rev. C 82, 045207 (2010)CrossRefADSGoogle Scholar
  68. 68.
    R. Kumar, A. Kumar, Eur. Phys. J. C 79, 403 (2019)CrossRefADSGoogle Scholar
  69. 69.
    A. Kumar, Adv. High Energy Phys. 2014, 549726 (2014)CrossRefGoogle Scholar
  70. 70.
    A. Mishra, Phys. Rev. C 91, 035201 (2015)CrossRefADSGoogle Scholar
  71. 71.
    Y. Kwon, M. Procura, W. Weise, Phys. Rev. C 78, 055203 (2008)CrossRefADSGoogle Scholar
  72. 72.
    S. Zschocke, O.P. Pavlenko, B. Kampfer, Eur. Phys. J. A 15, 529 (2002)CrossRefADSGoogle Scholar
  73. 73.
    T. Hatsuda, S.H. Lee, Phys. Rev. C 46, R34 (1992)CrossRefADSGoogle Scholar
  74. 74.
    A.V. Radyushkin, arXiv:hep-ph/0101227Google Scholar
  75. 75.
    T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B 394, 221 (1993)CrossRefADSGoogle Scholar
  76. 76.
    N.V. Krasnikov, Z. Phys. C 19, 301 (1983)CrossRefADSGoogle Scholar
  77. 77.
    G.S. Bali et al., J. High Energy Phys. 2013, 130 (2013)CrossRefGoogle Scholar
  78. 78.
    Sho Ozaki, Phys. Rev. D 89, 054022 (2014)CrossRefADSGoogle Scholar
  79. 79.
    Stefan Schramm et al., Mod. Phys. Lett. A 07, 973 (1992)CrossRefADSGoogle Scholar
  80. 80.
    Deog Ki Hong et al., Phys. Rev. D 54, 7879 (1996)CrossRefADSGoogle Scholar
  81. 81.
    Deog Ki Hong, Phys. Rev. D 57, 3759 (1998)CrossRefADSGoogle Scholar
  82. 82.
    J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974)CrossRefADSGoogle Scholar
  83. 83.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  84. 84.
    N. Kaiser, P. de Homont, W. Weise, Phys. Rev. C 77, 025204 (2008)CrossRefADSGoogle Scholar
  85. 85.
    A. Delfino et al., Phys. Lett. B 363, 17 (1995)CrossRefADSGoogle Scholar
  86. 86.
    K. Saito, K. Tsushima, A.W. Thomas, Mod. Phys. Lett. A 13, 769 (1998)CrossRefADSGoogle Scholar
  87. 87.
    Y. Koike, A. Hayashigaki, Prog. Theor. Phys. 98, 631 (1997)CrossRefADSGoogle Scholar
  88. 88.
    Y. Yamamoto et al., Phys. Rev. C 96, 065804 (2017)CrossRefADSGoogle Scholar
  89. 89.
    J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)CrossRefADSGoogle Scholar
  90. 90.
    S.E. Thorsett, D. Chakrabarty, Astrophys. J. 512, 288 (1999)CrossRefADSGoogle Scholar
  91. 91.
    J.H. van Kerkwijk, J. van Paradijs, E.J. Zuiderwijk, Astron. Astrophys. 303, 497 (1995)ADSGoogle Scholar
  92. 92.
    Y.F. Yuan, J.L. Zhang, Astrophys. J. 525, 950 (1999)CrossRefADSGoogle Scholar
  93. 93.
    S. Chakrabarty, D. Bandyopadhyay, S. Pal, Phys. Rev. Lett. 78, 2898 (1997)CrossRefADSGoogle Scholar
  94. 94.
    G. Mao, A. Iwamoto, Z. Li, Chin. J. Astron. Astrophys. 3, 359 (2003)CrossRefADSGoogle Scholar
  95. 95.
    G. Mao, N.V. Kondratyev, A. Iwamoto, Z. Li, X. Wu, W. Greiner, N.I. Mikhailov, Chin. Phys. Lett. 20, 1238 (2003)CrossRefADSGoogle Scholar
  96. 96.
    F.X. Wei, G.J. Mao, C.M. Ko, L.S. Kisslinger, H. Stocker, W. Greiner, J. Phys. G 32, 47 (2006)CrossRefADSGoogle Scholar
  97. 97.
    V.R. Khalilov, Phys. Rev. D 65, 056001 (2002)CrossRefADSGoogle Scholar
  98. 98.
    A. Rabhi, C. Providencia, J. Phys. G 35, 125201 (2008)CrossRefADSGoogle Scholar
  99. 99.
    C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001)CrossRefADSGoogle Scholar
  100. 100.
    A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)CrossRefADSGoogle Scholar
  101. 101.
    S. Chakrabarty et al., Phys. Rev. Lett. 78, 15 (1997)CrossRefGoogle Scholar
  102. 102.
    A. Broderick, M. Prakash, J.M. Lattimer, Phys. Lett. B 531, 167 (2002)CrossRefADSGoogle Scholar
  103. 103.
    C. Thompson, R.C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995)CrossRefADSGoogle Scholar
  104. 104.
    C. Thompson, R.C. Duncan, Astrophys. J. 473, 322 (1996)CrossRefADSGoogle Scholar
  105. 105.
    D. Lai, S.L. Shapiro, Astrophys. J. 383, 745 (1991)CrossRefADSGoogle Scholar
  106. 106.
    Y.F. Yuan, J.L. Zhang, Astrophys. J. 525, 950 (1999)CrossRefADSGoogle Scholar
  107. 107.
    P. Yue, H. Shen, Phys. Rev. C 77, 045804 (2008)CrossRefADSGoogle Scholar
  108. 108.
    P. Dey, A. Bhattacharyya, D. Bandyopadhyay, J. Phys. G 28, 2179 (2002)CrossRefADSGoogle Scholar
  109. 109.
    C.Y. Ryu, S.-W. Hong, J. Korean Phys. Soc. 59, 247 (2011)CrossRefADSGoogle Scholar
  110. 110.
    J.A. Pons et al., Astrophys. J. 513, 780 (1999)CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsDr. B R Ambedkar National Institute of Technology JalandharPunjabIndia

Personalised recommendations