Advertisement

Air pollution impact on carbonate building stones in Italian urban sites

  • Giorgia Vidorni
  • Alessandro Sardella
  • Paola De Nuntiis
  • Francesca Volpi
  • Adelaide Dinoi
  • Daniele Contini
  • Valeria Comite
  • Carmela Vaccaro
  • Paola Fermo
  • Alessandra BonazzaEmail author
Regular Article
  • 8 Downloads
Part of the following topical collections:
  1. Focus Point on Past and Present: Recent Advances in the Investigation of Ancient Materials by Means of Scientific Instrumental Techniques

Abstract.

In spite of the widely recognized negative effect of air pollution on stone used in historic building heritage located in urban areas and the numerous studies internationally developed on this topic, gaps still remain in measuring deposition fluxes on architectural surfaces and developing proper tools for short- and long-term management of cultural heritage in polluted areas in a changing environment. Two-years long field exposure tests with model samples are currently under execution in Italian cities characterized by different environmental conditions, as a non-invasive methodological approach for investigating the impact of urban pollution on carbonate stones (marble and limestone). Several analytical techniques (both physical and chemical) are used for characterising the state of degradation of the exposed stone specimens while aerosol monitoring campaigns allow to compare the atmospheric components with those actually accumulate on samples surface. After a description of the methodological approach of this study and a general environmental characterisation of each selected site, results of aerosol monitoring campaigns (including bioaerosol) and colorimetric analyses performed during the whole period of exposure in Bologna are here presented and discussed.

References

  1. 1.
    C.M. Grossi, R.M. Esbert, F. Díaz-Pache, F.J. Alonso, Build. Environ. 38, 147 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Sabbioni, The Effect of Air Pollution on the Built Environment, edited by P. Brimblecombe (Imperial College Press, Singapore, 2003)Google Scholar
  3. 3.
    G. Cultrone, A. Arizzi, E. Sebastián, C. Rodriguez-Navarro, Environ. Geol. 56, 741 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C. Grifa et al., Int. J. Conserv. Sci. 7, 885 (2016)Google Scholar
  5. 5.
    F. Izzo et al., Eur. Phys. J. Plus. 133, 363 (2018)CrossRefGoogle Scholar
  6. 6.
    D. Barca et al., Appl. Geochem. 48, 122 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Sabbioni, G. Zappia, G. Gobbi, J. Geophys. Res. 101, 19621 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    A. Bonazza, P. De Nuntiis, P. Mandrioli, C. Sabbioni, in Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate, edited by C. Tomasi, S. Fuzzi, A. Kokhanovsky (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017)Google Scholar
  9. 9.
    P. Brimblecombe, C.M. Grossi, APT Bulletin: J. Preserv. Technol. 38, 13 (2007)Google Scholar
  10. 10.
    E.R. Graber, Y. Rudich, Atmos. Chem. Phys. 6, 729 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bonazza et al., Environ. Sci. Technol. 41, 4199 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Grossi, Urban Pollution and Changes to Materials and Building Surfaces, edited by P. Brimblecombe (Imperial College Press, Singapore, 2016)Google Scholar
  13. 13.
    A. Bonazza, C. Sabbioni, N. Ghedini, Atmos. Environ. 39, 2607 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Á. Török, Build. Environ. 38, 1185 (2003)CrossRefGoogle Scholar
  15. 15.
    Á. Török, N. Rozgonyi, Environ. Geol. 46, 333 (2004)CrossRefGoogle Scholar
  16. 16.
    Á. Török, Environ. Geol. 56, 583 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    L. Toniolo, C.M. Zerbi, R. Bugini, Environ. Sci. Pollut. Res. 16, 218 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Bonazza, C. Sabbioni, in Urban Pollution and Changes to Materials and Building Surfaces, edited by P. Brimblecombe (Imperial College Press, Singapore, 2016)Google Scholar
  19. 19.
    M. Pantani et al., Trans. Ecol. Environ. 21, 675 (1998)Google Scholar
  20. 20.
    A. Chabas et al., Environ. Sci. Pollut. Res. 22, 19170 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Realini et al., Sci. Total Environ. 167, 67 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    G. Zappia et al., Sci. Total Environ. 224, 235 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    H.A. Viles et al., Sci. Total Environ. 292, 215 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M. Urosevic et al., Sci. Total Environ. 414, 564 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J. Tidblad et al., Inter. J. Corros. 2012, 1 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Bonazza, Proceedings of Conference Built Heritage 2013 - Monitoring Conservation and Management, edited by M. Boriani, R. Gabaglio, D. Gulotta (Politecnico di Milano, 2013)Google Scholar
  27. 27.
    V. Comite et al., Constr. Build. Mater. 152, 907 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Piazzalunga et al., Anal. Bioanal. Chem. 405, 1123 (2013)CrossRefGoogle Scholar
  29. 29.
    P. Fermo et al., Atmos. Chem. Phys. 6, 255 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    P. Panteliadis et al., Atmos. Meas. Tech. 8, 779 (2015)CrossRefGoogle Scholar
  31. 31.
    INAIL, Il monitoraggio microbiologico negli ambienti di lavoro: Campionamento e analisi (Edizioni INAIL, Milano, Italy, 2010)Google Scholar
  32. 32.
    INAIL, La qualità del dato analitico nel monitoraggio ambientale del bioaerosol: L’esperienza INAIL di intercalibrazione dei conteggi microbici su piastra (Edizioni INAIL, Milano, Italy, 2011)Google Scholar
  33. 33.
    UNI EN 15886:2010, Conservation of cultural property - Test methods - Colour measurement of surfaces (2010)Google Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    EEA-EU European Environment Agency, Air pollutant emissions data, https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer
  38. 38.
  39. 39.
  40. 40.
    Legislative Decree No. 250/2012: Amendments to the Ambient Air QualityGoogle Scholar
  41. 41.
  42. 42.
    M.F. La Russa et al., Sci. Total Environ. 593-594, 297 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    A. Piazzalunga et al., Atmos. Environ. 45, 6642 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    I. Ricciardelli et al., Atmos. Environ. 152, 418 (2017)ADSCrossRefGoogle Scholar
  45. 45.
  46. 46.
    P. Mandrioli, G. Caneva, C. Sabbioni, Cultural Heritage and Aerobiology Methods and Measurement Techniques for Biodeterioration Monitoring (Kluwer Academic Publishers, Dordrecht, Nederland, 2003)Google Scholar
  47. 47.
    P. Denuntiis, F. Palla, in Biotechnology and Conservation of Cultural Heritage, edited by F. Palla, G. Barresi (Springer, Cham, Swizerland, 2017)Google Scholar
  48. 48.
    P. Brimblecombe, C.M. Grossi, Mater. Constr. 58, 143 (2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giorgia Vidorni
    • 1
    • 2
  • Alessandro Sardella
    • 1
  • Paola De Nuntiis
    • 1
  • Francesca Volpi
    • 1
  • Adelaide Dinoi
    • 3
  • Daniele Contini
    • 3
  • Valeria Comite
    • 4
  • Carmela Vaccaro
    • 1
    • 2
  • Paola Fermo
    • 4
  • Alessandra Bonazza
    • 1
    Email author
  1. 1.Institute of Atmospheric Sciences and Climate CNR-ISACBolognaItaly
  2. 2.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  3. 3.Institute of Atmospheric Sciences and Climate CNR-ISACLecceItaly
  4. 4.Department of ChemistryUniversity of MilanMilanItaly

Personalised recommendations