Advertisement

Effect of water flow characteristics on gypsum dissolution

  • Ehsan BehnamtalabEmail author
  • Ahmad Delbari
  • Hamed Sarkardeh
Regular Article
  • 6 Downloads

Abstract.

Gypsum is one of the karstic rocks with many positive and negative characteristics. The most important defect of these rocks is solubility against water flow. The dissolution phenomenon in gypsum is accompanied by the release of the sulfate ion in water increasing its concentration, gradually. In this research, the effect of water flow temperature (T), Reynolds number (Re) and water head (H) on gypsum dissolution rate was evaluated, experimentally. In all of the experiments, gypsum samples were prepared approximately in the same dimensions and a circular hole was created inside the sample. Results showed that by increasing the temperature above \( T/T_{a}=1.30\) (Ta = temperature of the ambient air), the dissolution rate of gypsum was significantly increased. At the end of the experiment, the hole diameter (d) at the temperatures \( T/T_{a}=1.09\), 1.30, 1.52 and 1.74 has been increased about 90%, 137%, 141% and 148% from the initial hole diameter (di), respectively. The dissolution rate at \( T/T_{a}=1.09\) is about 50% less than the dissolution rate at temperatures \( T/T_{a}=1.52\) to 1.74. Moreover, the increasing rate of the outlet discharge for H/d = 333 is 1.89 times the increasing rate of the outlet discharge for \( H/d=167\).

References

  1. 1.
    Derek C. Ford, Paul W. Williams, Karst Geomorphology and Hydrology (Unwin Hyman, London, 1989)Google Scholar
  2. 2.
    Matthias Willmann, A modeling study on void evolution beneath a dam in a gypsum environment with the example of Horsetooth dam, Master’s Thesis at the chair of Applied Geology University of Tübingen, Colorado, September (2001)Google Scholar
  3. 3.
    E. Bock, Can. J. Chem. 39, 1746 (1961)CrossRefGoogle Scholar
  4. 4.
    Sung-Tsuen Liu, G.H. Nancollas, J. Inorg. Nucl. Chem. 33, 2311 (1971)CrossRefGoogle Scholar
  5. 5.
    E. Nonveiller, Bull. Int. Assoc. Eng. Geol. 25, 165 (1982)CrossRefGoogle Scholar
  6. 6.
    Joseph D. Martinez, Kenneth S. Johnson, James T. Neal, Am. Sci. 86, 38 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Wolfgang Dreybrodt, Laurent Eisenlohr, Limestone dissolution rates in karst environments, in Speleogenesis: Evolution of Karst Aquifers, edited by A. Klimchouk, D.C. Ford, A.N. Palmer, W. Dreybroadt (Nat. Speleol. Soc., USA, 2000) pp. 136--148Google Scholar
  8. 8.
    Douchko Romanov, Franci Gabrovšek, Wolfgang Dreybrodt, Eng. Geol. 70, 17 (2003)CrossRefGoogle Scholar
  9. 9.
    Alexander A. Jeschke, Katrin Vosbeck, Wolfgang Dreybrodt, Geochim. Cosmochim. Acta 65, 27 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Anthony Noel James, Soluble Materials in Civil Engineering (Ellis Horwood, 1992)Google Scholar
  11. 11.
    Marko Breznik, Storage Reservoirs and Deep Wells in Karst Regions (CRC Press, 1998)Google Scholar
  12. 12.
    Petar T. Milanovic, Geological Engineering in Karst (Zebra Publishing, Belgrade, 2000)Google Scholar
  13. 13.
    W. Dreybrodt, J. Siemers, Cave evolution on two-dimensional networks of primary fractures in limestone, in Speleogenesis: Evolution of karst aquifers (Nat. Speleol. Soc, 2000) pp. 201--211Google Scholar
  14. 14.
    A.N. James, I.M. Kirkpatrick, Quart. J. Eng. Geol. Hydrogeol. 13, 189 (1980)CrossRefGoogle Scholar
  15. 15.
    C.E. Calcano, P. Rodrigues Alzura, Problems of dissolution of gypsum in some dam sites, in Bulletin of Venezuelan Society of Soil Mechanics and Foundation Engineering (1967)Google Scholar
  16. 16.
    Lloyd H. Shaffer, J. Chem. Eng. Data 12, 183 (1967)CrossRefGoogle Scholar
  17. 17.
    A.N. James, A.R.R. Lupton, Geotechnique 28, 249 (1978)CrossRefGoogle Scholar
  18. 18.
    G.R. Gobran, S. Miyamoto, Soil. Sci. 140, 80 (1985)CrossRefADSGoogle Scholar
  19. 19.
    J.E. Gale, Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties, in The 28th US Symposium on Rock Mechanics (USRMS) (American Rock Mechanics Association, 1987)Google Scholar
  20. 20.
    A.N. Palmer, Solutional enlargement of openings in the vicinity of hydraulic structures in karst regions, in Proceedings of the 2nd Conference on Environmental Problems in Karst Terranes and their Solutions (Association of Ground Water Scientists and Engineers, 1988) pp. 3--15Google Scholar
  21. 21.
    Faisal Abid Al-Fatah Nafie, The properties of highly gypsiferous soils and their significance for land management, PhD disscrtation (1989)Google Scholar
  22. 22.
    Alexander Klimchouk, Int. J. Speleol. 25, 2 (1996)Google Scholar
  23. 23.
    A.A. Al-Mufty, Effect of gypsum dissolution on the mechanical behavior of gypseous soils, unpublished PhD Thesis, Civil Engineering Department, University of Baghdad, Baghdad, Iraq (1997)Google Scholar
  24. 24.
    G.M. Marion, R.E. Farren, Soil Sci. 61, 1666 (1997)CrossRefGoogle Scholar
  25. 25.
    Michael A. Raines, Thomas A. Dewers, Chem. Geol. 140, 29 (1997)CrossRefADSGoogle Scholar
  26. 26.
    Wolfgang Dreybrodt, Douchko Romanov, F. Gabrovsek, Environ. Geol. 42, 518 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Klimchouk, V. Andrejchuk, Int. J. Speleol. 31, 4 (2002)Google Scholar
  28. 28.
    Benjamin J. Andre, Harihar Rajaram, Water Resour. Res. 41, W01015 (2005)CrossRefADSGoogle Scholar
  29. 29.
    Dashnor Hoxha, Françoise Homand, Christophe Auvray, Eng. Geol. 86, 1 (2006)CrossRefGoogle Scholar
  30. 30.
    J. Sadrekarimi, M. Kiyani, B. Fakhri, Gypsum dissolution effects on the performance of a large dam (ICOLD, Barcelona, 2006)Google Scholar
  31. 31.
    W. Pfingsten, Jens Mibus, Roland Kuechler, Reactive transport codes applied to gypsum dissolution in a laboratory column experiment focusing on the sensitivity of model concepts and data uncertainty (IAHS Publ., 2006) p. 151Google Scholar
  32. 32.
    Russell L. Detwiler, J. Geophys. Res. 113, B8 (2008)CrossRefGoogle Scholar
  33. 33.
    Jean Colombani, Geochim. Cosmochim. Acta 72, 5634 (2008)CrossRefGoogle Scholar
  34. 34.
    A. Burgos-Cara, C.V. Putnis, C. Rodriguez-Navarro, E. Ruiz-Agudo, Geochim. Cosmochim. Acta 179, 110 (2016)CrossRefADSGoogle Scholar
  35. 35.
    Georg Kaufmann, Franci Gabrovšek, Douchko Romanov, Dissolution and precipitation of fractures in soluble rock, in EGU General Assembly Conference Abstracts, Vol. 18 (EGU, 2016) p. 5651Google Scholar
  36. 36.
    Nadine G. Reitman, Shemin Ge, Karl Mueller, Hydrogeol. J. 22, 1403 (2014)CrossRefADSGoogle Scholar
  37. 37.
    Nanthi S. Bolan, J. Keith Syers, Malcolm E. Sumner, J. Sci. Food Agricult. 57, 527 (1991)CrossRefGoogle Scholar
  38. 38.
    A.H. Cooper, R.C. Calow, Avoiding gypsum geohazards: guidance for planning and construction, technical report WC/98/5 (1998)Google Scholar
  39. 39.
    A.H. Cooper, Geol. Soc. London, Eng. Geol. Spec. Publ. 15, 265 (1998)Google Scholar
  40. 40.
    Elka T. Porter, Lawrence P. Sanford, Steven E. Suttles, Limnol. Oceanogr. 45, 145 (2000)CrossRefADSGoogle Scholar
  41. 41.
    Jean Colombani, Jacques Bert, Geochim. Cosmochim. Acta 71, 1913 (2007)CrossRefADSGoogle Scholar
  42. 42.
    Orabi Al-Rawi, Shehdeh Ghannam, Hamid R. Al-Ani, Jordan J. Civ. Eng. 5, 357 (2011)Google Scholar
  43. 43.
    Ehsan Behnamtalab, Experimental Assessment of Solubility of Natural Gypsum, in 6th International Conference on Dam Engineering 15--17 Feb (2011)Google Scholar
  44. 44.
    Ehsan Behnamtalab, J. Geol. Soc. India 80, 262 (2012)CrossRefGoogle Scholar
  45. 45.
    Ehsan Behnamtalab, J. Geol. Soc. India 82, 583 (2013)CrossRefGoogle Scholar
  46. 46.
    Pachon-Rodriguez, Edgar Alejandro, Jean Colombani, AIChE J. 59, 1622 (2013)CrossRefGoogle Scholar
  47. 47.
    Frank M. White, Fluid Mechanics (WCB/McGraw-Hill, Boston, 1999)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations