Advertisement

The jump phenomenon of dynamic Poisson’s ratio and dynamic Young’s modulus in compressed copper nanorods

  • Guowei ZhangEmail author
  • Zailin Yang
Regular Article
  • 20 Downloads

Abstract.

In the paper, copper nanorods with different orientations and different lengths are simulated with applying the uniaxial compression load by the molecular dynamics method. Dynamic Poisson’s ratio and dynamic Young’s modulus of the nanorods at the process of the simulations are discussed. Aiming to a rigorous research, the tensile nanorods and the compressed nanorods are compared first. When a nanorod is compressed, there is a jump phenomenon in the changing process of dynamic Poisson’s ratio and dynamic Young’s modulus. The sequential order of jumps appearing is associated with the crystal orientation and the length of the nanorods. The smaller the orientation size is, the earlier the jump occurs. The compressed nanorod is stable when the size ratio of a nanorod is suitable and, simultaneously, the jump ranges of both Poisson’s ratio and Young’s modulus are the lowest.

References

  1. 1.
    S.J. Lee, S.W. Han, S.M. Hyun, H.J. Lee, J.H. Kim, Y.I. Kim, Curr. Appl. Phys. 9, S75 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    G. Domínguez-Rodríguez, A. Tapia, F. Aviles, Comput. Mater. Sci. 82, 257 (2014)CrossRefGoogle Scholar
  3. 3.
    B. Roschning, N. Huber, J. Mech. Phys. Solids 92, 55 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Banks-Sills, Y. Hikri, S. Krylov, V. Fourman, Y. Gerson, H.A. Bruck, Sensors Actuat. A 169, 98 (2011)CrossRefGoogle Scholar
  5. 5.
    K.L. Ngai, L.M. Wang, R. Liu, W.H. Wang, J. Mol. Liq. 205, 37 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Zhu, T. Fan, C. Xu, D. Zhang, Compos. Part A 91, 195 (2016)CrossRefGoogle Scholar
  7. 7.
    Z.X. Lu, X. Li, Z.Y. Yang, F. Xie, Compos. Struct. 138, 243 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Ahadi, S. Melin, Comput. Mater. Sci. 111, 322 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Kurban, C. Erkoç, Comput. Mater. Sci. 122, 295 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Xie, Z. Lu, Z. Yang, W. Hu, Z. Yuan, Polymer 98, 294 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Nose, Mol. Phys. 52, 255 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhao, X. Yin, S. Liang, Y. Liu, D. Wang, S. Deng, J. Hou, Chem. Res. Chin. U. 24, 367 (2008)CrossRefGoogle Scholar
  13. 13.
    Z. Yang, G. Zhang, J. Zhao, Phys. Lett. A 380, 917 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Johnson, Phys. Rev. B 39, 12554 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Yang, Q. Yang, G. Zhang, Phys. Lett. A 381, 280 (2017)CrossRefGoogle Scholar
  16. 16.
    H.A. Wu, Eur. J. Mech. A-Solid 25, 370 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Yang, G. Zhang, G. Luo, Chin. Phys. B 24, 066203 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and ArchitectureNortheast Electric Power UniversityJilinChina
  2. 2.College of Aerospace and Civil EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations