Multitechnique approach for unveiling the technological evolution in building materials during the Roman Imperial Age: The Atrium Vestae in Rome

  • Elisa Boccalon
  • Francesca RosiEmail author
  • Manuela Vagnini
  • Aldo Romani
Regular Article


The present study focuses on the chemical characterisation of the bricks and mortars of a Roman Imperial building, the Atrium Vestae, characterised at least by five building phases. From each phase, brick and mortar samples were selected in order to emphasise compositional differences and/or possible evolutions in the materials employed and in the building technology of different historical periods. This investigation is carried out by a multitechnique approach based on: optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS), Fourier Transform InfraRed (FT-IR) and micro-Raman spectroscopies. The comparison between contemporary samples or between samples produced in different ages provided important information to be integrated with the archaeological and historical data highlighting an improvement in the technological skill during the Imperial time. Furthermore, compositional similarities between samples of controversial dating, offered a hint to discriminate certain building phases and, finally, the compositional analyses were also extremely useful to determine the condition of the entire building.


  1. 1.
    J.P. Adam, Roman Building, Materials and Techniques (Routledge, Abingdon, 2005)Google Scholar
  2. 2.
    E.B. Van Deman, The Atrium Vestae (The Carnegie Institution of Washington, Washington D.C. 1909)Google Scholar
  3. 3.
    R.T. Scott, The later history of the ``Domus delle Vestali'', in Res Bene Gestae: Ricerche Di Storia Urbana Su Roma Antica in Onore Di Eva Margareta Steinby (Edizioni Quasar, Rome, 2007)Google Scholar
  4. 4.
    G. Chiari, Nature 453, 159 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    G. Chiari, P. Sarrazin, in Proceedings of the 9th International Conference on NDT of Art, Jerusalem, 2008 (2008) pp. 25--30Google Scholar
  6. 6.
    M. Gaeta, Miner. Mag. 62, 697 (1998)CrossRefGoogle Scholar
  7. 7.
    E. Huang, C.H. Chen, T. Huang, E.H. Lin, J.-A. Xu, Am. Mineral. 85, 473 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    G. Ricci, L. Caneve, D. Pedron, N. Holesch, E. Zendri, Microchem. J. 126, 104 (2016)CrossRefGoogle Scholar
  9. 9.
    G.I. Cultrone, C.A. Rodriguez-Navarro, E.D. Sebastian, Eur. J. Miner. 13, 621 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Dondi, G. Ercolani, B. Fabbri, M. Marsigli, Clay Miner. 33, 443 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, Handbook of Mineralogy (Mineral Data Publishing, Tucson, 1990)Google Scholar
  12. 12.
    E. Hamilton, J. Geophys. Res. 105, 9701 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    M.El. Ouahabi, L. Daoudi, N. Fagel, Clays Clay Miner. 63, 404 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    T. Peters, R. Iberg, Am. Ceram. Soc. Bull. 57, 503 (1978)Google Scholar
  15. 15.
    G. Barone, V. Crupi, F. Longo, D. Majolino, P. Mazzoleni, D. Tanasi, V. Venuti, J. Mol. Struct. 993, 147 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.P. Riccardi, B. Messiga, P. Duminuco, Clay Miner. 33, 393 (1999)Google Scholar
  17. 17.
    L. Maritan, C. Mazzoli, G. Dal Sasso, S. Mazzocchin, S. Cipriano, Eur. Phys. J. Plus 133, 358 (2018)CrossRefGoogle Scholar
  18. 18.
    B. Fabbri, S. Gualtieri, S. Shoval, J. Eur. Ceram. Soc. 34, 1899 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Freeman, A. Wang, K.E. Kuebler, B.L. Jollif, L.A. Haskin, Can. Mineral. 46, 1795 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Cuomo di Caprio, Ceramics in Archaeology. From Prehistoric to Medieval times in Europe and the Mediterranean: Ancient Craftsmanship and Modern Laboratory Techniques, in Manuali L’Erma, 2 (L’Erma di Bretschneider, Rome, 2017)Google Scholar
  21. 21.
    L.A. Wang, B.L. Haskin, D. Jolliff, in Proceedings of 29th Annual Lunar and Planetary Science Conference (Washington University, St. Louis, 1998)Google Scholar
  22. 22.
    M. Jackson, D.M. Deocampo, F. Marra, B. Scheetz, Geoarchaeology 25, 36 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Sabbioni, C. Riontino, G. Zappia, O. Favoni, in Proceedings of the 5th International Symposium, Conservation of Monuments in the Mediterranean BasinGoogle Scholar
  24. 24.
    F.M. Lea, Lea’s Chemistry of Cement and Concrete, edited by P.C. Hewlett (Elsevier Butterworth-Heinmann, New York, 2003)Google Scholar
  25. 25.
    A. Peccerillo, Plio-quaternary magmatism in Italy, in Petrology, Geochemistry, Geodynamics (Springer, Heidelberg, 2005)Google Scholar
  26. 26.
    S. Bossi, Sacra via, porticus, arcus, stationes e balneum (64-500 d.C. circa), in Santuario Di Vesta, Pendice Del Palatino e Via Sacra, edited by A. Carandini, P. Carafa, D. Filippi (Rome, 2017)Google Scholar
  27. 27.
    D.J. Cherniak, Geochim. Cosmochim. Acta 66, 1641 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    D. Bersani, A. Benisek, M.A. Carpenter, G. Diego, J. Raman Spectrosc. 49, 1 (2018)CrossRefGoogle Scholar
  29. 29.
    D.W. Matson, S.K. Sharma, J.A. Philpotts, Am. Mineral. G 71, 694 (1986)Google Scholar
  30. 30.
    C. Rathossi, Y. Pontikes, Bull. Geol. Soc. Greece Ceram. 43, 856 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Lei, H.E. Zhen, X. Cai, J. Wuhan, Univ. Technol. Sci. Ed. 26, 319 (2011)Google Scholar
  32. 32.
    C. Sabbioni, G. Zappia, C. Riontino, J. Aguilera, F. Puertas, K.V. Balen, E.E. Toumbakari, Atmos. Environ. 35, 539 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    J. Valek, J.J. Hughes, C.J.W.P. Groot, Historic Mortars: Characterisation, Assessment and Repair (Springer Verlag, 2012)Google Scholar
  34. 34.
    T. Telford, Cement and Concrete Science and Technology (ABI Book Private Limited, New Dehli, 1991)Google Scholar
  35. 35.
    P. Klieger, R.D. Hooton, Carbonate Additions to Cement, ASTM STP 1064, (Philadelphia, 1990)Google Scholar
  36. 36.
    C.B. Satish, S.J. Myneni, G.A. Traina, T.J.L. Waychunas, Geochim. Cosmochim. Acta 62, 3499 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    M. Jackson, F. Marra, D.M. Deocampo, B. Scheetz, A. Vella, Analisi delle componenti geologiche nelle murature del Foro di Cesare, in Atti Del Convegno “Il Foro Di Cesare” (Quasar, Roma, 2010)Google Scholar
  38. 38.
    Y. Huchinson, Ceramic Technology for Potters and Sculptors (University of Pennsylvania Press, 1995)Google Scholar
  39. 39.
    C.V. Putnis, T. Geisler, P. Schmid-Beurmann, T. Stephan, C. Giampaolo, Am. Mineral. 92, 19 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Istituto CNR di Scienze e Tecnologie Molecolari (CNR-ISTM)PerugiaItaly
  3. 3.Associazione Laboratorio di Diagnostica per i Beni CulturaliSpoleto (PG)Italy
  4. 4.Centro di eccellenza SMAArt (Scientific Methodologies applied to Archaeology and Art)Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations