Advertisement

Investigating the effect of piston bowl geometry on the partially premixed dual fuel combustion engine at low load condition

  • Hassan Khatamnejad
  • Bahram Jafari
  • D. D. GanjiEmail author
Regular Article
  • 16 Downloads

Abstract.

One of the most important emerged technologies to improve the emission characteristics of internal combustion engines is the dual-fuel combustion engines being fueled with an abundant clean environmentally friendly fuel such as natural gas as the main fuel while having conventional compression ignition engine design. In this research, a three-dimensional CFD model of fluid flow coupled with the chemical kinetics mechanism is developed and the numerical results of a partially premixed combustion of natural gas and diesel fuel are presented in different piston bowl shapes. The results of the numerical analyses for different combustion chamber designs in the natural gas-diesel dual fuel engine reveal that the bathtub shape geometry, comparing with other piston-bowl geometries, results in a combustion being more efficient and yielding better performance.

References

  1. 1.
    R.G. Papagiannakis, D.T. Hountalas, Ener. Convers. Manage. 45, 2971 (2004)CrossRefGoogle Scholar
  2. 2.
    O.M.I. Nwafor, Sadhana 27, 375 (2002)CrossRefGoogle Scholar
  3. 3.
    R.G. Papagiannakis, P.N. Kotsiopoulos, T.C. Zannis, E.A. Yfantis, D.T. Hountalas, C.D. Rakopoulos, Energy 35, 1129 (2010)CrossRefGoogle Scholar
  4. 4.
    S.M. Mousavi, R.K. Saray, K. Poorghasemi, A. Maghbouli, Fuel 166, 309 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Li, Z. Liu, Z. Wang, Energy 94, 72841 (2016)Google Scholar
  6. 6.
    B. Yang, L. Wang, L. Ning, K. Zeng, Appl. Therm. Eng. 102, 822 (2016)CrossRefGoogle Scholar
  7. 7.
    A.G. Hockett, G. Hampson, A.J. Marchese, Int. J. Powertrains 6, 76 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Reitz, G. Duraisamy, Prog. Energy Combust. Sci. 46, 12 (2015)CrossRefGoogle Scholar
  9. 9.
    J.M. Desantes, J. Benajes, A. Garcia, J. Monsalve-Serrano, Energy 78, 854 (2014)CrossRefGoogle Scholar
  10. 10.
    A.B. Dempsey, N.R. Walker, E. Gingrich, R.D. Reitz, Combus. Sci. Technol. 186, 210 (2014)CrossRefGoogle Scholar
  11. 11.
    A.H. Kakaee, P. Rahnama, A. Paykani, J. Nat. Gas Sci. Eng. 25, 58 (2015)CrossRefGoogle Scholar
  12. 12.
    S.L. Kokjohn, R.M. Hanson, D.A. Splitter, R.D. Reitz, Int. J. Eng. Res. 12, 209 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Benajes, S. Molina, A. García, E. Belarte, M. Vanvolsem, Appl. Therm. Eng. 63, 66 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Benajes, J.M. Pastor, A. Garcia, J. Monsalve-Serrano, Energy Convers. Manag. 103, 1019 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Benajes, A. Garcia, J.M. Pastor, J. Monsalve-Serrano, Energy 98, 64 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Dempsey, N. Walker, R. Reitz, SAE Int. J. Eng. 6, 78 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Splitter, M. Wissink, S. Kokjohn, R. Reitz, Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency, SAE Technical Paper 2012-01-0383 (2012)  https://doi.org/10.4271/2012-01-0383
  18. 18.
    A.-H. Kakaee, A. Nasiri-Toosi, B. Partovi, A. Paykani, Appl. Therm. Eng. 102, 1462 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Li, W.M. Yang, D.Z. Zhou, Energy Convers. Manag. 112, 359 (2016)CrossRefGoogle Scholar
  20. 20.
    J.C. Beale, R.D. Reitz, At. Sprays 9, 623 (1999)CrossRefGoogle Scholar
  21. 21.
    N. Ladommatos, H. Zhao, Engine Combustion Instrumentation and Diagnostics (SAE International, 2001)Google Scholar
  22. 22.
    S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and ChapmanJouguet Detonations, NASA SP-273Google Scholar
  23. 23.
    Z. Han, R.D. Reitz, Combustion 106, 267 (1995)CrossRefGoogle Scholar
  24. 24.
    J.K. Dukowicz, J. Comput. Phys. 35, 229 (1980)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.C. Beale, R.D. Reitz, At. Sprays 9, 623 (1999)CrossRefGoogle Scholar
  26. 26.
    R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, 1996-05-01,  https://doi.org/10.2172/481621
  27. 27.
    Derek E. Nieman, Adam B. Dempsey, Rolf D. Reitz, SAE Int. J. Eng. 5, 270 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Wang, R. Reitz, M. Yao, Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants, SAE Technical Paper 2012-01-0134, 2012,  https://doi.org/10.4271/2012-01-0134

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hassan Khatamnejad
    • 1
  • Bahram Jafari
    • 2
  • D. D. Ganji
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringUrmia UniversityUrmiaIran
  2. 2.Faculty of engineering modern technologiesAmol University of Special Modern ThechnologiesAmolIran
  3. 3.Department of Mechanical EngineeringBabol Noushirvani University of TechnologyBabolIran

Personalised recommendations