Calculation of two-point resistances for conducting media needs regularization of Coulomb singularities

  • Malik MamodeEmail author
Regular Article


The definition of the electrical resistance between two arbitrary points of a conducting d -dimensional medium is clarified and we show that the calculation of such two-point resistances in the ideal case needs the regularization of Coulomb singularities located at current input and output points. The case of 2 -dimensional media stands apart from other dimensionality because of the scale invariance of the fundamental solution for the Laplacian operator on the plane. The regularization of logarithmic Coulomb singularities implies that the resistance between two arbitrary points is an indeterminable constant conventionally chosen as zero.


  1. 1.
    N. Ida, Engineering Electromagnetics, 2nd edition (Springer Publishing Company, Incorporated, 2007)Google Scholar
  2. 2.
    B. Van Der Pol, H. Bremmer, Operational Calculus: Based on the Two-sided Laplace Integral (University Press, 1950)Google Scholar
  3. 3.
    J. Cserti, Am. J. Phys. 68, 896 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    F.Y. Wu, J. Phys. A 37, 6653 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.H. Asad, J. Stat. Phys. 150, 1177 (2013)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Venezian, Am. J. Phys. 62, 1000 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Jafarizadeh, R. Sufiani, S. Jafarizadeh, J. Phys. A 40, 4949 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P.G. Doyle, L. Snell, Random Walks and Electric Networks, in Carus Mathematical Monographs, First Printing edition (Mathematical Association of America, 1984)Google Scholar
  9. 9.
    B. Van der Pol, The finite-difference analogy of the periodic wave equation and the potential equation, in Probability and Related Topics in Physical Sciences, edited by M. Kac, Lecture in Applied Mathematics, Vol. 1 (Interscience Edition, London, 1959)Google Scholar
  10. 10.
    L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958)Google Scholar
  11. 11.
    J.D. Weiss, R.J. Kaplar, K.E. Kambour, Solid-State Electron. 52, 91 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    D.W. Koon, Rev. Sci. Instrum. 60, 271 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Cieśliński, Thin Solid Films 522, 314 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Editors), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, NY, 2010) see also NIST Digital Library of Mathematical Functions,
  15. 15.
    L.C. Evans, Partial Differential Equations (American Mathematical Society, 1998)Google Scholar
  16. 16.
    Y.Y. Melamed, M. Lin, Principle of sufficient reason, in The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta (Metaphysics Research Lab, Stanford University, 2018)Google Scholar
  17. 17.
    D. Boito, L.N.S. de Andrade, G. de Sousa, R. Gama, C.Y.M. London, On Maxwell’s electrodynamics in two spatial dimensions, arXiv:1809.07368Google Scholar
  18. 18.
    I.M. Gel’fand, G.E. Shilov, Generalized Functions: Properties and Operations, Vol. 1 (Academic Press, 1964)Google Scholar
  19. 19.
    S. Giordano, Int. J. Circ. Theory Appl. 33, 519 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Giordano, Physica A 375, 726 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, PMS-32 (Princeton University Press, 1971)Google Scholar
  22. 22.
    Z. Maassarani, J. Phys. A 33, 5675 (2000)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Katsura, T. Morita, S. Inawashiro T. Horiguchi, Y. Abe, J. Math. Phys. 12, 892 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2000)Google Scholar
  25. 25.
    J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques (Hermann, Paris, 1932)Google Scholar
  26. 26.
    L. Blanchet, G. Faye, J. Math. Phys. 41, 7675 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965)Google Scholar
  28. 28.
    P.M. Chaikin, T.C. Lubenskii, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)Google Scholar
  29. 29.
    E.A. Abbott, Flatland: A Romance of Many Dimensions (Classic science fiction, Penguin, 1984)Google Scholar
  30. 30.
    B.D. Hughes, Random Walks and Random Environments: Random Walks, Vol. 1 (Oxford science publications, Clarendon Press, 1995)Google Scholar
  31. 31.
    P. Lessa, Recurrence vs. transience: An introduction to random walks, in Dynamics Done with Your Bare Hands, edited by F. Ledrappier, F. Dal’Bo, A. Wilkinson, EMS Series of Lectures in Mathematics (Zürich, 2016)Google Scholar
  32. 32.
    G. Pólya, Math. Ann. 84, 149 (1921)MathSciNetCrossRefGoogle Scholar
  33. 33.
    I. Benjamini, R. Pemantle, Y. Peres, J. Theor. Probab. 9, 231 (1996)CrossRefGoogle Scholar
  34. 34.
    M. Mamode, J. Phys. Commun. 1, 035002 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics - Laboratoire PIMENTUniversity of La RéunionLe TamponFrance

Personalised recommendations