Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields
- 22 Downloads
Abstract.
The shape memory alloy, referred to as the material of the future, is the first to come to mind in the class of smart materials. Shape memory alloys are already present in many important areas. In the medical field, glasses frame material, the material of intravenous stents, jet engines in the aviation area, and bridges in the construction area can be mentioned. Although the shape memory effect is found in different material types such as ceramics and polymer, shape memory alloys are the most commonly used among these materials. The atomic-bond types of the alloys provide long-lasting and durable properties compared to other material types. The extraordinary mechanics of solid-state transformation and the kinematics of the bonds between atoms exhibit a unique nature formation. Discovered too late in the history of humanity, this feature changed the material understanding of the last 80 years and enabled industrial application to have a very important function coming from intelligent material types. In this study, a detailed study on the mechanical characterization of shape memory alloys in microstructure, types of shape memory effect, shape memory alloy, phase transformations and applications are presented.
References
- 1.Z.L. Wang, Adv. Mater. 10, 13 (1998)CrossRefGoogle Scholar
- 2.W. Huang, Mater. Des. 23, 11 (2002)ADSCrossRefGoogle Scholar
- 3.K. Otsuka, C.M. Wayman, Shape memory materials (Cambridge University Press, 1999)Google Scholar
- 4.K. Ullakko, J. Mater. Eng. Perform. 5, 405 (1996)CrossRefGoogle Scholar
- 5.Z. Wei, R. Sandstroröm, S. Miyazaki, J. Mater. Sci. 33, 3743 (1998)ADSCrossRefGoogle Scholar
- 6.L. Sun, W. Huang, Metal Sci. Heat Treat. 51, 573 (2009)ADSCrossRefGoogle Scholar
- 7.D. Hartl, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 53Google Scholar
- 8.K. Otsuka, X. Ren, Intermetallics 7, 511 (1999)CrossRefGoogle Scholar
- 9.D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng., Part G 221, 535 (2007)CrossRefGoogle Scholar
- 10.K. DeLaurentis, C. Mavroidis, C. Pfeiffer, in 7th International Conference on New Actuators (ACTUATOR 2000), Bremen, Germany, June (Messe Bremen GmbH, 2000) p. 19Google Scholar
- 11.L. Janke et al., Mater. Struct. 38, 578 (2005)Google Scholar
- 12.S. Miyazaki, K. Otsuka, ISIJ Int. 29, 353 (1989)CrossRefGoogle Scholar
- 13.A. Ölander, J. Am. Chem. Soc. 54, 3819 (1932)CrossRefGoogle Scholar
- 14.M. Hassan, M. Mehrpouya, S. Dawood, in Applied Mechanics and Materials (Trans Tech Publ, 2014) p. 533Google Scholar
- 15.M. Eskil, K. Aldaş, I. Özkul, Metall. Mater. Trans. A 46, 134 (2015)CrossRefGoogle Scholar
- 16.J. Cederström, J. Van Humbeeck, J. Phys. IV 5, C2 (1995)Google Scholar
- 17.J.M. Jani et al., Mater. Des. 56, 1078 (2014)CrossRefGoogle Scholar
- 18.D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (CRC Press, 2009)Google Scholar
- 19.C. Wayman, MRS Bull. 18, 49 (1993)CrossRefGoogle Scholar
- 20.M. Fremond, S. Miyazaki, Shape Memory Alloys, 1st edition (Springer-Verlag Wien, 1996)CrossRefGoogle Scholar
- 21.J.G. Boyd, D.C. Lagoudas, Int. J. Plast. 12, 805 (1996)CrossRefGoogle Scholar
- 22.F. Falk, Acta Metall. 28, 1773 (1980)CrossRefGoogle Scholar
- 23.O. Adiguzel, J. Mater. Process. Technol. 185, 120 (2007)CrossRefGoogle Scholar
- 24.K. Otsuka et al., Acta Metall. 24, 207 (1976)CrossRefGoogle Scholar
- 25.L.C. Brinson, J. Intell. Mater. Syst. Struct. 4, 229 (1993)CrossRefGoogle Scholar
- 26.G. Eggeler et al., Mater. Sci. Eng.: A 378, 24 (2004)CrossRefGoogle Scholar
- 27.Y. Fu et al., Surf. Coat. Technol. 145, 107 (2001)CrossRefGoogle Scholar
- 28.Y. Zhao et al., Acta Mater. 53, 337 (2005)CrossRefGoogle Scholar
- 29.V. Khovailo et al., J. Appl. Phys. 93, 8483 (2003)ADSCrossRefGoogle Scholar
- 30.H. Otsuka et al., ISIJ Int. 30, 674 (1990)CrossRefGoogle Scholar
- 31.Y. Sutou, R. Kainuma, K. Ishida, Mater. Sci. Eng.: A 273, 375 (1999)CrossRefGoogle Scholar
- 32.K. Eckelmeyer, Scr. Metall. 10, 667 (1976)CrossRefGoogle Scholar
- 33.J. Van Humbeeck, Mater. Sci. Eng.: A 273, 134 (1999)CrossRefGoogle Scholar
- 34.C. Wayman, JOM 32, 129 (1980)CrossRefGoogle Scholar
- 35.L. Machado, M. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)CrossRefGoogle Scholar
- 36.J. Cederstrom, J. Van Humbeeck, J. Phys. IV, 335 (1995)Google Scholar
- 37.B.B. Lichtenstein, Generative Emergence: A new discipline of organizational, entrepreneurial and social innovation (Oxford University Press, USA, 2014)Google Scholar
- 38.A.A. Alonso, C.V. Fernandez, J.R. Banga, Int. J. Robust Nonlinear Control 14, 157 (2004)CrossRefGoogle Scholar
- 39.Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2008)Google Scholar
- 40.R.E. Sonntag, Fundamentals of Thermodynamics (Wiley, New York, 1998)Google Scholar
- 41.H. Yalçın, M. Gürü, Mühendislik Termodinamiği (Ankara, 2004) (in Turkish)Google Scholar
- 42.E. Belin-Ferre, Basics of Thermodynamics and Phase Transitions in Complex Intermetallics (World Scientific, 2008)Google Scholar
- 43.Z. Nishiyama, Martensitic Transformation (Elsevier, 2012)Google Scholar
- 44.H. Funakubo, J. Kennedy, Shape Memory Alloys (Gordon and Breach, 1987)Google Scholar
- 45.W.J. Buehler, F.E. Wang, Ocean Eng. 1, 105 (1968)CrossRefGoogle Scholar
- 46.D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, 2008)Google Scholar
- 47.I. Mayergoyz, The Science Hysteresis: Physical modeling, micromagnetics, and magnetization dynamics (Gulf Professional Publishing, 2006)Google Scholar
- 48.A. Jena, M.C. Chaturvedi, Phase Transformation in Materials (Prentice Hall, 1992)Google Scholar
- 49.P. Ehrenfest, Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales (NV Noord-Hollandsche, Uitgevers Maatschappij, 1933)Google Scholar
- 50.C. Wayman, K. Shimizu, Metal Sci. J. 6, 175 (1972)CrossRefGoogle Scholar
- 51.R. Dasgupta et al., J. Mater. Res. Technol. 3, 264 (2014)CrossRefGoogle Scholar
- 52.W. Rottiers, in Korolev’s Reading (Korolev’s Reading, Rusia, 2011) p. 250Google Scholar
- 53.K. Worden, W.A. Bullough, J. Haywood, Smart Technologies (World Scientific, 2003)Google Scholar
- 54.A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies (Butterworth-Heinemann, 2015)Google Scholar
- 55.W. Huang, W. Toh, J. Mater. Sci. Lett. 19, 1549 (2000)CrossRefGoogle Scholar
- 56.P. Angelo, R. Subramanian, Powder Metallurgy: Science, Technololgy and Applications (PHI Learning Pvt. Ltd., 2008)Google Scholar
- 57.M. Zarinejad, Y. Liu, Dependence of Transformation Temperatures of Shape Memory Alloys on the Number and Concentration of Valence Electrons (Nova Science Publishers, Inc., New York, 2010) p. 339Google Scholar
- 58.J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55, 257 (2010)CrossRefGoogle Scholar
- 59.Y. Waseda, E. Matsubara, K. Shinoda, X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems (Springer Science & Business Media, 2011)Google Scholar
- 60.D. Misell, C. Stolinski, Scanning Electron Microscopy and X-Ray Microanalysis (Pergamon, 1983)Google Scholar
- 61.Y. Zheng et al., J. Alloys Compd. 441, 317 (2007)CrossRefGoogle Scholar
- 62.A. Paiva, M.A. Savi, Math. Probl. Eng. 2006, (2006)Google Scholar
- 63.K. Otsuka, K. Shimizu, Int. Metals Rev. 31, 93 (1986)Google Scholar
- 64.W.J. Buehler, Nickel-based Alloys, US Patent 174 (R.C. Wiley, 1965) p. 851Google Scholar
- 65.J. Van Humbeeck, M. Chandrasekaran, L. Delaey, Endeavour 15, 148 (1991)CrossRefGoogle Scholar
- 66.W.J. Buehler, J. Gilfrich, R. Wiley, J. Appl. Phys. 34, 1475 (1963)ADSCrossRefGoogle Scholar
- 67.A. Melzer, D. Stoeckel, Open Med. Dev. J. 2, 32 (2010)CrossRefGoogle Scholar
- 68.C.A. Canbay, I. Özkul, Turk. J. Eng. 2, 7 (2018)CrossRefGoogle Scholar
- 69.M. Es-Souni, M. Es-Souni, H. Fischer-Brandies, Anal. Bioanal. Chem. 381, 557 (2005)CrossRefGoogle Scholar
- 70.E. Kalay, A.E. Nomer, M.A. Kurgun, Turk. J. Eng. 2, 98 (2018)Google Scholar
- 71.P. Sittner et al., Mech. Mater. 38, 475 (2006)CrossRefGoogle Scholar
- 72.H. Okamoto, Desk: Handbook: Phase Diagrams for Binary Alloys (ASM International, 2000)Google Scholar
- 73.V. Asanović, D. Kemal, Metalurgija 13, 59 (2007)Google Scholar
- 74.R. Ferreira et al., Mater. Res. 3, 119 (2000)CrossRefGoogle Scholar
- 75.M. Eskil, N. Kayali, Mater. Lett. 60, 630 (2006)CrossRefGoogle Scholar
- 76.S. Naichao, Chin. J. Mater. Res. 5, (1999)Google Scholar
- 77.N.-c. Si, G.-q. Zhao, D.-q. Yang, Chin. J. Nonferr. Metals 13, 398 (2003)Google Scholar
- 78.O. Adigüzel, Mater. Res. Bull. 30, 755 (1995)CrossRefGoogle Scholar
- 79.A. Abu-Arab, M. Chandrasekaran, M. Ahlers, Scr. Metall. 18, 709 (1984)CrossRefGoogle Scholar
- 80.N. Kayali, R. Zengin, O. Adiguzel, Metall. Mater. Trans. A 31, 349 (2000)CrossRefGoogle Scholar
- 81.A. Amengual, Scr. Metall. Mater. 26, 1795 (1992)CrossRefGoogle Scholar
- 82.J. Kwarciak, Z. Bojarski, H. Morawiec, J. Mater. Sci. 21, 788 (1986)ADSCrossRefGoogle Scholar
- 83.R. Kainuma, S. Takahashi, K. Ishida, Metall. Mater. Trans. A 27, 2187 (1996)CrossRefGoogle Scholar
- 84.Z. Lin et al., Intermetallics 8, 605 (2000)CrossRefGoogle Scholar
- 85.J. Font et al., Mater. Sci. Eng.: A 354, 207 (2003)CrossRefGoogle Scholar
- 86.S. Husain, P. Clapp, J. Mater. Sci. 22, 2351 (1987)ADSCrossRefGoogle Scholar
- 87.S. Miyazaki et al., Trans. Jpn. Inst. Metals 22, 244 (1981)CrossRefGoogle Scholar
- 88.S. Vajpai, R. Dube, S. Sangal, Mater. Sci. Eng.: A 529, 378 (2011)CrossRefGoogle Scholar
- 89.C. Lexcellent, Shape-Memory Alloys Handbook (John Wiley & Sons, 2013)Google Scholar
- 90.E. Hornbogen, N. Jost, The Martensitic Transformation in Science and Technology (DGM Metallurgy Information, 1989)Google Scholar
- 91.R. Kainuma, S. Takahashi, K. Ishida, J. Phys. IV 5, C8 (1995)Google Scholar
- 92.N. Zarubova, V. Novák, Mater. Sci. Eng.: A 378, 216 (2004)CrossRefGoogle Scholar
- 93.C.A. Canbay, Z.K. Genc, M. Sekerci, Appl. Phys. A 115, 371 (2014)ADSCrossRefGoogle Scholar
- 94.C.A. Canbay, S. Gudeloglu, Z.K. Genc, Int. J. Thermophys. 36, 783 (2015)ADSCrossRefGoogle Scholar
- 95.Y. Jiao et al., J. Alloys Compd. 491, 627 (2010)CrossRefGoogle Scholar
- 96.A. Sato et al., J. Phys. Coll. 43, C4 (1982)Google Scholar
- 97.A. Sato, Y. Yamaji, T. Mori, Acta Metall. 34, 287 (1986)CrossRefGoogle Scholar
- 98.K. Verbeken, N. Van Caenegem, D. Raabe, Micron 40, 151 (2009)CrossRefGoogle Scholar
- 99.A. Charfi et al., C. R. Chim. 12, 270 (2009)CrossRefGoogle Scholar
- 100.Y. Wen et al., Mater. Sci. Eng.: A 457, 334 (2007)CrossRefGoogle Scholar
- 101.T. Bouraoui, F. Jemal, T.B. Zineb, Strength Mater. 40, 203 (2008)CrossRefGoogle Scholar
- 102.P. Kumar, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 1Google Scholar
- 103.P. Webster et al., Philos. Mag. B 49, 295 (1984)ADSCrossRefGoogle Scholar
- 104.H.Y. Kim et al., Mater. Trans. 45, 2443 (2004)CrossRefGoogle Scholar
- 105.J. Lelatko, H. Morawiec, J. Phys. IV 11, Pr8 (2001)Google Scholar
- 106.W.F. Smith, J. Hashemi, Foundations of Materials Science and Engineering (Mcgraw-Hill Publishing, 2006)Google Scholar
- 107.H. Rösner et al., Acta Mater. 49, 1541 (2001)CrossRefGoogle Scholar
- 108.T. Tadaki, Shape Memory Materials (Cambridge University Press, 1998) p. 97Google Scholar
- 109.G. Lojen et al., J. Mater. Proc. Technol. 162, 220 (2005)CrossRefGoogle Scholar
- 110.W. Duerig, Engineering Aspects of Shape Memory Alloys (Heinemann London Boston MA, 1990)Google Scholar
- 111.D.E. Hodgson, W. Ming, R.J. Biermann, Metals Handbook ASM International, tenth edition, Vol. 2 (ASM International, 1990) p. 897Google Scholar
- 112.J.F. Wakjira, The VT1 Shape Memory Alloy Heat Engine Design (Virginia Tech, 2001)Google Scholar
- 113.M. Indirli, M.G. Castellano, Int. J. Architect. Herit. 2, 93 (2008)CrossRefGoogle Scholar
- 114.D. Cardone, R. Angiuli, G. Gesualdi, Int. J. Architect. Herit. 1, (2019)Google Scholar
- 115.P.B. Leal, M.A. Savi, Aerospace Sci. Technol. 76, 155 (2018)CrossRefGoogle Scholar
- 116.W.-T. Jhou et al., J. Alloys Compd. 738, 336 (2018)CrossRefGoogle Scholar
- 117.E. Aldirmaz et al., J. Alloys Compd. 743, 227 (2018)CrossRefGoogle Scholar
- 118.M. Hao et al., Nat. Energy 3, 899 (2018)ADSCrossRefGoogle Scholar
- 119.A. Saren, A. Smith, K. Ullakko, Microfluidics Nanofluidics 22, 38 (2018)CrossRefGoogle Scholar