Advertisement

Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields

  • İskender ÖzkulEmail author
  • Mehmet Ali Kurgun
  • Ece Kalay
  • Canan Aksu Canbay
  • Kemal Aldaş
Regular Article
  • 22 Downloads

Abstract.

The shape memory alloy, referred to as the material of the future, is the first to come to mind in the class of smart materials. Shape memory alloys are already present in many important areas. In the medical field, glasses frame material, the material of intravenous stents, jet engines in the aviation area, and bridges in the construction area can be mentioned. Although the shape memory effect is found in different material types such as ceramics and polymer, shape memory alloys are the most commonly used among these materials. The atomic-bond types of the alloys provide long-lasting and durable properties compared to other material types. The extraordinary mechanics of solid-state transformation and the kinematics of the bonds between atoms exhibit a unique nature formation. Discovered too late in the history of humanity, this feature changed the material understanding of the last 80 years and enabled industrial application to have a very important function coming from intelligent material types. In this study, a detailed study on the mechanical characterization of shape memory alloys in microstructure, types of shape memory effect, shape memory alloy, phase transformations and applications are presented.

References

  1. 1.
    Z.L. Wang, Adv. Mater. 10, 13 (1998)CrossRefGoogle Scholar
  2. 2.
    W. Huang, Mater. Des. 23, 11 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    K. Otsuka, C.M. Wayman, Shape memory materials (Cambridge University Press, 1999)Google Scholar
  4. 4.
    K. Ullakko, J. Mater. Eng. Perform. 5, 405 (1996)CrossRefGoogle Scholar
  5. 5.
    Z. Wei, R. Sandstroröm, S. Miyazaki, J. Mater. Sci. 33, 3743 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    L. Sun, W. Huang, Metal Sci. Heat Treat. 51, 573 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D. Hartl, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 53Google Scholar
  8. 8.
    K. Otsuka, X. Ren, Intermetallics 7, 511 (1999)CrossRefGoogle Scholar
  9. 9.
    D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng., Part G 221, 535 (2007)CrossRefGoogle Scholar
  10. 10.
    K. DeLaurentis, C. Mavroidis, C. Pfeiffer, in 7th International Conference on New Actuators (ACTUATOR 2000), Bremen, Germany, June (Messe Bremen GmbH, 2000) p. 19Google Scholar
  11. 11.
    L. Janke et al., Mater. Struct. 38, 578 (2005)Google Scholar
  12. 12.
    S. Miyazaki, K. Otsuka, ISIJ Int. 29, 353 (1989)CrossRefGoogle Scholar
  13. 13.
    A. Ölander, J. Am. Chem. Soc. 54, 3819 (1932)CrossRefGoogle Scholar
  14. 14.
    M. Hassan, M. Mehrpouya, S. Dawood, in Applied Mechanics and Materials (Trans Tech Publ, 2014) p. 533Google Scholar
  15. 15.
    M. Eskil, K. Aldaş, I. Özkul, Metall. Mater. Trans. A 46, 134 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Cederström, J. Van Humbeeck, J. Phys. IV 5, C2 (1995)Google Scholar
  17. 17.
    J.M. Jani et al., Mater. Des. 56, 1078 (2014)CrossRefGoogle Scholar
  18. 18.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (CRC Press, 2009)Google Scholar
  19. 19.
    C. Wayman, MRS Bull. 18, 49 (1993)CrossRefGoogle Scholar
  20. 20.
    M. Fremond, S. Miyazaki, Shape Memory Alloys, 1st edition (Springer-Verlag Wien, 1996)CrossRefGoogle Scholar
  21. 21.
    J.G. Boyd, D.C. Lagoudas, Int. J. Plast. 12, 805 (1996)CrossRefGoogle Scholar
  22. 22.
    F. Falk, Acta Metall. 28, 1773 (1980)CrossRefGoogle Scholar
  23. 23.
    O. Adiguzel, J. Mater. Process. Technol. 185, 120 (2007)CrossRefGoogle Scholar
  24. 24.
    K. Otsuka et al., Acta Metall. 24, 207 (1976)CrossRefGoogle Scholar
  25. 25.
    L.C. Brinson, J. Intell. Mater. Syst. Struct. 4, 229 (1993)CrossRefGoogle Scholar
  26. 26.
    G. Eggeler et al., Mater. Sci. Eng.: A 378, 24 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Fu et al., Surf. Coat. Technol. 145, 107 (2001)CrossRefGoogle Scholar
  28. 28.
    Y. Zhao et al., Acta Mater. 53, 337 (2005)CrossRefGoogle Scholar
  29. 29.
    V. Khovailo et al., J. Appl. Phys. 93, 8483 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    H. Otsuka et al., ISIJ Int. 30, 674 (1990)CrossRefGoogle Scholar
  31. 31.
    Y. Sutou, R. Kainuma, K. Ishida, Mater. Sci. Eng.: A 273, 375 (1999)CrossRefGoogle Scholar
  32. 32.
    K. Eckelmeyer, Scr. Metall. 10, 667 (1976)CrossRefGoogle Scholar
  33. 33.
    J. Van Humbeeck, Mater. Sci. Eng.: A 273, 134 (1999)CrossRefGoogle Scholar
  34. 34.
    C. Wayman, JOM 32, 129 (1980)CrossRefGoogle Scholar
  35. 35.
    L. Machado, M. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Cederstrom, J. Van Humbeeck, J. Phys. IV, 335 (1995)Google Scholar
  37. 37.
    B.B. Lichtenstein, Generative Emergence: A new discipline of organizational, entrepreneurial and social innovation (Oxford University Press, USA, 2014)Google Scholar
  38. 38.
    A.A. Alonso, C.V. Fernandez, J.R. Banga, Int. J. Robust Nonlinear Control 14, 157 (2004)CrossRefGoogle Scholar
  39. 39.
    Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2008)Google Scholar
  40. 40.
    R.E. Sonntag, Fundamentals of Thermodynamics (Wiley, New York, 1998)Google Scholar
  41. 41.
    H. Yalçın, M. Gürü, Mühendislik Termodinamiği (Ankara, 2004) (in Turkish)Google Scholar
  42. 42.
    E. Belin-Ferre, Basics of Thermodynamics and Phase Transitions in Complex Intermetallics (World Scientific, 2008)Google Scholar
  43. 43.
    Z. Nishiyama, Martensitic Transformation (Elsevier, 2012)Google Scholar
  44. 44.
    H. Funakubo, J. Kennedy, Shape Memory Alloys (Gordon and Breach, 1987)Google Scholar
  45. 45.
    W.J. Buehler, F.E. Wang, Ocean Eng. 1, 105 (1968)CrossRefGoogle Scholar
  46. 46.
    D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, 2008)Google Scholar
  47. 47.
    I. Mayergoyz, The Science Hysteresis: Physical modeling, micromagnetics, and magnetization dynamics (Gulf Professional Publishing, 2006)Google Scholar
  48. 48.
    A. Jena, M.C. Chaturvedi, Phase Transformation in Materials (Prentice Hall, 1992)Google Scholar
  49. 49.
    P. Ehrenfest, Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales (NV Noord-Hollandsche, Uitgevers Maatschappij, 1933)Google Scholar
  50. 50.
    C. Wayman, K. Shimizu, Metal Sci. J. 6, 175 (1972)CrossRefGoogle Scholar
  51. 51.
    R. Dasgupta et al., J. Mater. Res. Technol. 3, 264 (2014)CrossRefGoogle Scholar
  52. 52.
    W. Rottiers, in Korolev’s Reading (Korolev’s Reading, Rusia, 2011) p. 250Google Scholar
  53. 53.
    K. Worden, W.A. Bullough, J. Haywood, Smart Technologies (World Scientific, 2003)Google Scholar
  54. 54.
    A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies (Butterworth-Heinemann, 2015)Google Scholar
  55. 55.
    W. Huang, W. Toh, J. Mater. Sci. Lett. 19, 1549 (2000)CrossRefGoogle Scholar
  56. 56.
    P. Angelo, R. Subramanian, Powder Metallurgy: Science, Technololgy and Applications (PHI Learning Pvt. Ltd., 2008)Google Scholar
  57. 57.
    M. Zarinejad, Y. Liu, Dependence of Transformation Temperatures of Shape Memory Alloys on the Number and Concentration of Valence Electrons (Nova Science Publishers, Inc., New York, 2010) p. 339Google Scholar
  58. 58.
    J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55, 257 (2010)CrossRefGoogle Scholar
  59. 59.
    Y. Waseda, E. Matsubara, K. Shinoda, X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems (Springer Science & Business Media, 2011)Google Scholar
  60. 60.
    D. Misell, C. Stolinski, Scanning Electron Microscopy and X-Ray Microanalysis (Pergamon, 1983)Google Scholar
  61. 61.
    Y. Zheng et al., J. Alloys Compd. 441, 317 (2007)CrossRefGoogle Scholar
  62. 62.
    A. Paiva, M.A. Savi, Math. Probl. Eng. 2006, (2006)Google Scholar
  63. 63.
    K. Otsuka, K. Shimizu, Int. Metals Rev. 31, 93 (1986)Google Scholar
  64. 64.
    W.J. Buehler, Nickel-based Alloys, US Patent 174 (R.C. Wiley, 1965) p. 851Google Scholar
  65. 65.
    J. Van Humbeeck, M. Chandrasekaran, L. Delaey, Endeavour 15, 148 (1991)CrossRefGoogle Scholar
  66. 66.
    W.J. Buehler, J. Gilfrich, R. Wiley, J. Appl. Phys. 34, 1475 (1963)ADSCrossRefGoogle Scholar
  67. 67.
    A. Melzer, D. Stoeckel, Open Med. Dev. J. 2, 32 (2010)CrossRefGoogle Scholar
  68. 68.
    C.A. Canbay, I. Özkul, Turk. J. Eng. 2, 7 (2018)CrossRefGoogle Scholar
  69. 69.
    M. Es-Souni, M. Es-Souni, H. Fischer-Brandies, Anal. Bioanal. Chem. 381, 557 (2005)CrossRefGoogle Scholar
  70. 70.
    E. Kalay, A.E. Nomer, M.A. Kurgun, Turk. J. Eng. 2, 98 (2018)Google Scholar
  71. 71.
    P. Sittner et al., Mech. Mater. 38, 475 (2006)CrossRefGoogle Scholar
  72. 72.
    H. Okamoto, Desk: Handbook: Phase Diagrams for Binary Alloys (ASM International, 2000)Google Scholar
  73. 73.
    V. Asanović, D. Kemal, Metalurgija 13, 59 (2007)Google Scholar
  74. 74.
    R. Ferreira et al., Mater. Res. 3, 119 (2000)CrossRefGoogle Scholar
  75. 75.
    M. Eskil, N. Kayali, Mater. Lett. 60, 630 (2006)CrossRefGoogle Scholar
  76. 76.
    S. Naichao, Chin. J. Mater. Res. 5, (1999)Google Scholar
  77. 77.
    N.-c. Si, G.-q. Zhao, D.-q. Yang, Chin. J. Nonferr. Metals 13, 398 (2003)Google Scholar
  78. 78.
    O. Adigüzel, Mater. Res. Bull. 30, 755 (1995)CrossRefGoogle Scholar
  79. 79.
    A. Abu-Arab, M. Chandrasekaran, M. Ahlers, Scr. Metall. 18, 709 (1984)CrossRefGoogle Scholar
  80. 80.
    N. Kayali, R. Zengin, O. Adiguzel, Metall. Mater. Trans. A 31, 349 (2000)CrossRefGoogle Scholar
  81. 81.
    A. Amengual, Scr. Metall. Mater. 26, 1795 (1992)CrossRefGoogle Scholar
  82. 82.
    J. Kwarciak, Z. Bojarski, H. Morawiec, J. Mater. Sci. 21, 788 (1986)ADSCrossRefGoogle Scholar
  83. 83.
    R. Kainuma, S. Takahashi, K. Ishida, Metall. Mater. Trans. A 27, 2187 (1996)CrossRefGoogle Scholar
  84. 84.
    Z. Lin et al., Intermetallics 8, 605 (2000)CrossRefGoogle Scholar
  85. 85.
    J. Font et al., Mater. Sci. Eng.: A 354, 207 (2003)CrossRefGoogle Scholar
  86. 86.
    S. Husain, P. Clapp, J. Mater. Sci. 22, 2351 (1987)ADSCrossRefGoogle Scholar
  87. 87.
    S. Miyazaki et al., Trans. Jpn. Inst. Metals 22, 244 (1981)CrossRefGoogle Scholar
  88. 88.
    S. Vajpai, R. Dube, S. Sangal, Mater. Sci. Eng.: A 529, 378 (2011)CrossRefGoogle Scholar
  89. 89.
    C. Lexcellent, Shape-Memory Alloys Handbook (John Wiley & Sons, 2013)Google Scholar
  90. 90.
    E. Hornbogen, N. Jost, The Martensitic Transformation in Science and Technology (DGM Metallurgy Information, 1989)Google Scholar
  91. 91.
    R. Kainuma, S. Takahashi, K. Ishida, J. Phys. IV 5, C8 (1995)Google Scholar
  92. 92.
    N. Zarubova, V. Novák, Mater. Sci. Eng.: A 378, 216 (2004)CrossRefGoogle Scholar
  93. 93.
    C.A. Canbay, Z.K. Genc, M. Sekerci, Appl. Phys. A 115, 371 (2014)ADSCrossRefGoogle Scholar
  94. 94.
    C.A. Canbay, S. Gudeloglu, Z.K. Genc, Int. J. Thermophys. 36, 783 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    Y. Jiao et al., J. Alloys Compd. 491, 627 (2010)CrossRefGoogle Scholar
  96. 96.
    A. Sato et al., J. Phys. Coll. 43, C4 (1982)Google Scholar
  97. 97.
    A. Sato, Y. Yamaji, T. Mori, Acta Metall. 34, 287 (1986)CrossRefGoogle Scholar
  98. 98.
    K. Verbeken, N. Van Caenegem, D. Raabe, Micron 40, 151 (2009)CrossRefGoogle Scholar
  99. 99.
    A. Charfi et al., C. R. Chim. 12, 270 (2009)CrossRefGoogle Scholar
  100. 100.
    Y. Wen et al., Mater. Sci. Eng.: A 457, 334 (2007)CrossRefGoogle Scholar
  101. 101.
    T. Bouraoui, F. Jemal, T.B. Zineb, Strength Mater. 40, 203 (2008)CrossRefGoogle Scholar
  102. 102.
    P. Kumar, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 1Google Scholar
  103. 103.
    P. Webster et al., Philos. Mag. B 49, 295 (1984)ADSCrossRefGoogle Scholar
  104. 104.
    H.Y. Kim et al., Mater. Trans. 45, 2443 (2004)CrossRefGoogle Scholar
  105. 105.
    J. Lelatko, H. Morawiec, J. Phys. IV 11, Pr8 (2001)Google Scholar
  106. 106.
    W.F. Smith, J. Hashemi, Foundations of Materials Science and Engineering (Mcgraw-Hill Publishing, 2006)Google Scholar
  107. 107.
    H. Rösner et al., Acta Mater. 49, 1541 (2001)CrossRefGoogle Scholar
  108. 108.
    T. Tadaki, Shape Memory Materials (Cambridge University Press, 1998) p. 97Google Scholar
  109. 109.
    G. Lojen et al., J. Mater. Proc. Technol. 162, 220 (2005)CrossRefGoogle Scholar
  110. 110.
    W. Duerig, Engineering Aspects of Shape Memory Alloys (Heinemann London Boston MA, 1990)Google Scholar
  111. 111.
    D.E. Hodgson, W. Ming, R.J. Biermann, Metals Handbook ASM International, tenth edition, Vol. 2 (ASM International, 1990) p. 897Google Scholar
  112. 112.
    J.F. Wakjira, The VT1 Shape Memory Alloy Heat Engine Design (Virginia Tech, 2001)Google Scholar
  113. 113.
    M. Indirli, M.G. Castellano, Int. J. Architect. Herit. 2, 93 (2008)CrossRefGoogle Scholar
  114. 114.
    D. Cardone, R. Angiuli, G. Gesualdi, Int. J. Architect. Herit. 1, (2019)Google Scholar
  115. 115.
    P.B. Leal, M.A. Savi, Aerospace Sci. Technol. 76, 155 (2018)CrossRefGoogle Scholar
  116. 116.
    W.-T. Jhou et al., J. Alloys Compd. 738, 336 (2018)CrossRefGoogle Scholar
  117. 117.
    E. Aldirmaz et al., J. Alloys Compd. 743, 227 (2018)CrossRefGoogle Scholar
  118. 118.
    M. Hao et al., Nat. Energy 3, 899 (2018)ADSCrossRefGoogle Scholar
  119. 119.
    A. Saren, A. Smith, K. Ullakko, Microfluidics Nanofluidics 22, 38 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • İskender Özkul
    • 1
    Email author
  • Mehmet Ali Kurgun
    • 1
  • Ece Kalay
    • 1
  • Canan Aksu Canbay
    • 2
  • Kemal Aldaş
    • 3
  1. 1.Mersin UniversityDepartment of Mechanical EngineeringMersinTurkey
  2. 2.Firat UniversityDepartment of PhysicElazigTurkey
  3. 3.Aksaray UniversityDepartment of Mechanical EngineeringAksarayTurkey

Personalised recommendations