Advertisement

Is 198Hg a soft triaxial nucleus with \(\gamma = 30^{\circ}\)?

  • M. AlimohammadiEmail author
  • L. Fortunato
  • A. Vitturi
Regular Article
  • 21 Downloads

Abstract.

Our purpose with this paper is mainly to raise the question about the shape of 198Hg and to suggest it as a testing ground for different models. The spectroscopic properties of this nucleus have been investigated by applying a computational code based on the diagonalization the Bohr-Mottelson Hamiltonian with the generalized Gneuss-Greiner potential. The coefficients of the kinetic energy operator and potential energy for this nucleus have been obtained by including the experimental data of some levels in the fitting code. These calculations indicate that the \(0^{+}_{2}\) level of nucleus 198Hg is found somewhere between \( 1.23 \lesssim 0^{+}_{2} \lesssim 1.65\) that is precisely the region where a few excited 0+ states are found. Also, they predict a rather rigid triaxial shape around \( \gamma = 30^{\circ}\), that is soft in the \( \beta\) variable.

References

  1. 1.
    B.A. Marsh, T. Day Goodacre et al., Nat. Phys. 14, 1163 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Jolie, A. Linnemann, Phys. Rev. C 68, 031301(R) (2003)ADSCrossRefGoogle Scholar
  3. 3.
    C. Bernards, R.F. Casten et al., Phys. Rev. C 87, 024318 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Chunmei, Nucl. Data Sheets 95, 59 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M. Vergnes, G. Berrier-Ronsins et al., Nucl. Phys. A 514, 381 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    H. Xiaolong, K. Mengxiao, Nucl. Data Sheets 133, 221 (2016)CrossRefGoogle Scholar
  7. 7.
    K. Nomura, R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 87, 064313 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Garcia-Ramos, K. Heyde, Phys. Rev. C 89, 014306 (2014)ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    D. Bonatsos et al., Phys. Rev. C 95, 064326 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Aa. Bohr, Dan. Mat. Fys. Medd. 26, 1 (1952)Google Scholar
  12. 12.
    Aa. Bohr, B.R. Mottelson, Dan. Mat. Fys. Medd. 27, 1 (1953)Google Scholar
  13. 13.
    G. Gneuss, W. Greiner, Nucl. Phys. A 171, 449 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    W. Greiner, J.A. Maruhn, Nuclear Models (Springer, 1996)Google Scholar
  15. 15.
    F. Ferrari-Ruffino, L. Fortunato, Computation 6, 48 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Chakraborty, H.P. Sharma, S.S. Tiwary, arXiv:1807.10499v1Google Scholar
  17. 17.
    L. Fortunato, S. De Baerdemacker, K. Heyde, Phys. Rev. C 74, 014310 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    P. Moeller et al., At. Data Nucl. Data Tables 109-110, 1 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Lalazissis et al., At. Data Nucl. Data Tables 71, 1 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsShahrood University of TechnologyShahroodIran
  2. 2.Dipartimento di Fisica e Astronomia “G. Galilei”Univerisità di PadovaPadovaItaly
  3. 3.INFNSezione di PadovaPadovaItaly

Personalised recommendations