Advertisement

Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing?

  • Ramil N. IzmailovEmail author
  • Amrita Bhattacharya
  • Eduard R. Zhdanov
  • Alexander A. Potapov
  • Kamal K. Nandi
Regular Article
  • 10 Downloads

Abstract.

Recent trend of research indicates that not only massive but also massless (asymptotic Newtonian mass zero) wormholes can reproduce post-merger initial ring-down gravitational waves characteristic of black hole horizon. In the massless case, it is the non-zero charge of other fields, equivalent to what we call here the “Wheelerian mass”, that is responsible for mimicking ring-down quasi-normal modes. In this paper, we enquire whether the same Wheelerian mass can reproduce black hole observables also in an altogether different experiment, viz., the strong field lensing. We examine two classes of massless wormholes, one in the Einstein-Maxwell-dilaton (EMD) theory and the other in the Einstein Minimally coupled Scalar (EMS) field theory. The observables such as the radius of the shadow, image separation and magnification of the corresponding Wheelerian masses are compared with those of a black hole (idealized SgrA* chosen for illustration) assuming that the three types of lenses share the same minimum impact parameter and distance from the observer. It turns out that, while the massless EMS wormholes can closely mimic the black hole in terms of strong field lensing observables, the EMD wormholes show considerable differences due to the presence of dilatonic charge. The conclusion is that masslessless alone is enough to closely mimic Schwarzschild black hole strong lensing observables in the EMS theory but not in the other, where extra parameters also influence those observables. The motion of timelike particles is briefly discussed for completeness.

References

  1. 1.
    V. Cardoso, E. Franzin, P. Pani, Phys. Rev. Lett. 116, 171101 (2016) 117ADSCrossRefGoogle Scholar
  2. 2.
    V. Cardoso, P. Pani, Nat. Astron. 1, 586 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    T. Damour, S.N. Soludukhin, Phys. Rev. D 76, 024016 (2007)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S.H. Völkel, K.D. Kokkotas, Class. Quantum Grav. 35, 105018 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    P. Bueno, P.A. Cano, F. Goelen, T. Hertog, B. Vercnocke, Phys. Rev. D 97, 024040 (2018)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K.K. Nandi, R.N. Izmailov, E.R. Zhdanov, Amrita Bhattacharya, JCAP 07, 027 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    H.G. Ellis, J. Math. Phys. 14, 104 (1973) 15ADSCrossRefGoogle Scholar
  8. 8.
    K.A. Bronnikov, Acta Phys. Polon. B 4, 251 (1973)MathSciNetGoogle Scholar
  9. 9.
    K.K. Nandi, I. Nigmatzyanov, R.N. Izmailov, N.G. Migranov, Class. Quantum Grav. 25, 165020 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Konoplya, A. Zhidenko, JCAP 12, 043 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    K.K. Nandi, R.N. Izmailov, A.A. Yanbekov, A.A. Shayakhmetov, Phys. Rev. D 95, 104011 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. Armendáriz-Pícon, Phys. Rev. D 65, 104010 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I.D. Novikov, A.A. Shatskiy, JETP 114, 801 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    K.A. Bronnikov, L.N. Lipatova, I.D. Novikov, A.A. Shatskiy, Gravit. Cosmol. 19, 269 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H.-a. Shinkai, S.A. Hayward, Phys. Rev. D 66, 044005 (2002)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J.A. Gonzalez, F.S. Guzman, O. Sarbach, Class. Quantum Grav. 26, 015010 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    V. Bozza, Phys. Rev. D 66, 103001 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    K.K. Nandi, Y.-Z. Zhang, A.V. Zakharov, Phys. Rev. D 74, 024020 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Iyer, E.C. Hansen, Phys. Rev. D 80, 124023 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Wheeler, Phys. Rev. 48, 73 (1957)Google Scholar
  21. 21.
    M. Visser, Lorentzian Wormholes: From Einstein To Hawking (AIP, New York, 1995)Google Scholar
  22. 22.
    F. Abe, Astrophys. J. 725, 787 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    P. Goulart, arXiv:1611.03164Google Scholar
  24. 24.
    K. Jusufi, A. Övgün, A. Banerjee, Phys. Rev. D 96, 084036 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    R.F. Lukmanova, G.Y. Tuleganova, R.N. Izmailov, K.K. Nandi, Phys. Rev. D 97, 124027 (2018)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Bhattacharya, A.A. Potapov, Mod. Phys. Lett. A 25, 2399 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    V. Bozza, L. Mancini, Astrophys. J. 753, 56 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Kato, M. Miyoshi, R. Takahashi, H. Negoro, R. Matsumoto, Mon. Not. R. Astron. Soc. 403, L74 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    C.R. Keeton, A.O. Petters, Phys. Rev. D 72, 104006 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    T. Lacroix, J. Silk, Astron. Astrophys. A 554, 36 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    K.S. Virbhadra, G.F.R. Ellis, Phys. Rev. D 62, 084003 (2000)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ramil N. Izmailov
    • 1
    Email author
  • Amrita Bhattacharya
    • 2
  • Eduard R. Zhdanov
    • 1
  • Alexander A. Potapov
    • 3
  • Kamal K. Nandi
    • 1
    • 4
  1. 1.Zel’dovich International Center for AstrophysicsBashkir State Pedagogical UniversityUfaRussia
  2. 2.Department of MathematicsKidderpore CollegeKolkataIndia
  3. 3.Department of Physics & AstronomyBashkir State UniversitySterlitamakRussia
  4. 4.High Energy Cosmic Ray Research CenterUniversity of North BengalSiliguriIndia

Personalised recommendations