Advertisement

Projections for model-independent limit estimates on top-quark anomalous electromagnetic couplings at the FCC-he

  • A. A. Billur
  • M. KöksalEmail author
  • A. Gutiérrez-Rodrıguez
  • M. A. Hernández-Ruız
Regular Article
  • 5 Downloads

Abstract.

The measurement of the top-quark anomalous electromagnetic couplings is one of the most important goals of the top-quark physics program in present and future collider experiments and would provide direct information on the non-standard interactions of the top quark. We study a top-quark pair production scenario at the Future Circular Collider Hadron-Electron (FCC-he) through \(e^{-}p \rightarrow e^{-}\gamma^{\ast}\gamma^{\ast}p \rightarrow e^{-}t\bar{t}p\) collisions, which will provide information on limits of anomalous \( \hat{a}_{V}\) and \( \hat{a}_{A}\) couplings at 95% CL, as well as create the possibility of probing new physics. Energy of the e- beams is taken to be \( E_{e}=250\) GeV and 500 GeV, and the energy of the p beams is considered to be \( E_{p}=50\) TeV. With these energies the FCC-he can measure the dipole moments of the top quark \( \hat{a}_{V}\) and \( \hat{a}_{A}\) with limits of the order \(\mathcal{O} (10^{-2} -10^{-1})\).

References

  1. 1.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  2. 2.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    P.W. Higgs, Phys. Lett. 12, 132 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 716, 1 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 716, 30 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Oliver Brüning, John Jowett, Max Klein, Dario Pellegrini, Daniel Schulte, Frank Zimmermann, EDMS 17979910 FCC-ACC-RPT-0012, V1.0 (6 April, 2017) https://fcc.web.cern.ch/Documents/FCCheBaselineParameters.pdf
  9. 9.
    LHeC Study Group (J.L.A. Fernandez et al.), J. Phys. G 39, 075001 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    LHeC Study Group (J.L.A. Fernandez), arXiv:1211.5102Google Scholar
  11. 11.
    J.L.A. Fernandez, arXiv:1211.4831Google Scholar
  12. 12.
    Huan-Yu, Bi, Ren-You Zhang, Xing-Gang Wu, Wen-Gan Ma, Xiao-Zhou Li, Samuel Owusu, Phys. Rev. D 95, 074020 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Y.C. Acar, A.N. Akay, S. Beser, H. Karadeniz, U. Kaya, B.B. Oner, S. Sultansoy, Nucl. Instrum. Methods Phys. Res. A 871, 47 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    O. Bruening, M. Klein, Mod. Phys. Lett. A 28, 1330011 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi, Phys. Rev. Lett. 95, 261802 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    F. Hoogeveen, Nucl. Phys. B 341, 322 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    M.E. Pospelov, I.B. Khriplovich, Sov. J. Nucl. Phys. 53, 638 (1991) (Yad. Fiz. 53Google Scholar
  18. 18.
    A. Soni, R.M. Xu, Phys. Rev. Lett. 69, 33 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    A. Juste, Y. Kiyo, F. Petriello, T. Teubner, K. Agashe, P. Batra, U. Baur, C.F. Berger, hep-ph/0601112Google Scholar
  20. 20.
    U. Baur, A. Juste, L.H. Orr, D. Rainwater, Phys. Rev. D 71, 054013 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    A.O. Bouzas, F. Larios, Phys. Rev. D 87, 074015 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Sh. Fayazbakhsh, S. Taheri Monfared, M. Mohammadi Najafabadi, Phys. Rev. D 92, 014006 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A.O. Bouzas, F. Larios, Phys. Rev. D 88, 094007 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    ECFA/DESY LC Physics Working Group Collaboration (J.A. Aguilar-Saavedra), hep-ph/0106315Google Scholar
  25. 25.
    M. Köksal, A.A. Billur, A. Gutierrez-Rodríguez, Adv. High Energy Phys. 2017, 6738409 (2017)CrossRefGoogle Scholar
  26. 26.
    A.A. Billur, M. Köksal, A. Gutierrez-Rodríguez, Phys. Rev. D 96, 056007 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    T. Ibrahim, P. Nath, Phys. Rev. D 82, 055001 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    D. Atwood, A. Aeppli, A. Soni, Phys. Rev. Lett. 69, 2754 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    P. Poulose, S.D. Rindani, Phys. Rev. D 57, 5444 (1998) Phys. Rev. D 61ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Choi, K. Hagiwara, Phys. Lett. B 359, 369 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    P. Poulose, S.D. Rindani, Phys. Rev. D 91, 093008 (2015)CrossRefGoogle Scholar
  32. 32.
    J.A. Aguilar-Saavedra, arXiv:hep-ph/0106315Google Scholar
  33. 33.
    M. Amjad, M. Boronat, T. Frisson, I.G. García, R. Pöschl, arXiv:1307.8102 [hep-ex]Google Scholar
  34. 34.
    D. Asner, arXiv:1307.8265 [hep-ex]Google Scholar
  35. 35.
    American Linear Collider Working Group Collaboration (T. Abe), arXiv:hep-ex/0106057Google Scholar
  36. 36.
    ILC Collaboration (G. Aarons), arXiv:0709.1893 [hep-ph]Google Scholar
  37. 37.
    ILC Collaboration (J. Brau), arXiv:0712.1950 [physics.acc-ph]Google Scholar
  38. 38.
    H. Baer, T. Barklow, K. Fujii, arXiv:1306.6352 [hep-ph]Google Scholar
  39. 39.
    B. Grzadkowski, Z. Hioki, K. Ohkuma, J. Wudka, JHEP 11, 029 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J.F. Kamenik, M. Papucci, A. Weiler, Phys. Rev. D 85, 071501 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Aguilar-Saavedra, M.C.N. Fiolhais, A. Onofre, JHEP 07, 180 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    W. Buhmuller, D. Wyler, Nul. Phys. B 268, 621 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    J.A. Aguilar-Saavedra, Nucl. Phys. B 812, 181 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)ADSCrossRefGoogle Scholar
  45. 45.
    G. Baur et al., Phys. Rep. 364, 359 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    K. Piotrzkowski, Phys. Rev. D 63, 071502 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    CDF Collaboration (A. Abulencia et al.), Phys. Rev. Lett. 98, 112001 (2007)CrossRefGoogle Scholar
  48. 48.
    CDF Collaboration (T. Aaltonen et al.), Phys. Rev. Lett. 102, 222002 (2009)CrossRefGoogle Scholar
  49. 49.
    CDF Collaboration (T. Aaltonen et al.), Phys. Rev. Lett. 102, 242001 (2009)CrossRefGoogle Scholar
  50. 50.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 01, 052 (2012)ADSGoogle Scholar
  51. 51.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 11, 080 (2012)ADSGoogle Scholar
  52. 52.
    D0 Collaboration (V.M. Abazov et al.), Phys. Rev. D 88, 012005 (2013)CrossRefGoogle Scholar
  53. 53.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 07, 116 (2013)ADSGoogle Scholar
  54. 54.
    A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    ATLAS Collaboration, Report No. ATL-PHYS-PUB-2015-39Google Scholar
  56. 56.
    ATLAS Collaboration, Eur. Phys. J. C 71, 1577 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    CMS Collaboration, Phys. Lett. B 695, 424 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    CMS Collaboration, Eur. Phys. J. C 71, 1721 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  60. 60.
    ATLAS Collaboration, Phys. Lett. B 761, 136 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    CMS Collaboration (V. Khachatryan et al.), Phys. Rev. Lett. 116, 052002 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deparment of PhysicsSivas Cumhuriyet UniversitySivasTurkey
  2. 2.Deparment of Optical EngineeringSivas Cumhuriyet UniversitySivasTurkey
  3. 3.Facultad de FísicaUniversidad Autónoma de Zacatecas Apartado Postal C-580ZacatecasMexico
  4. 4.Unidad Académica de Ciencias QuímicasUniversidad Autónoma de Zacatecas Apartado Postal C-585ZacatecasMexico

Personalised recommendations