Two-dimensional induced grating in Rydberg atoms via microwave field

  • Tayebeh NaseriEmail author
Regular Article


A novel two-dimensional phase and amplitude electromagnetically induced grating is proposed. This model improves the sensitivity of electromagnetically induced grating to the microwave field. The system experiences electromagnetically induced transparency (EIT) via interacting dark resonances. When two-dimensional standing control fields are applied to a Rydberg five-level EIT system, two sub-EIT systems appear and the central peak in the EIT window is splitted. Frequency splitting of two central absorption peaks is proportional to the microwave field strength. The simulations show that the efficiency of higher orders of two-dimensional EIG could be enhanced compared to a common four-level single-dark-state system without microwave field. Therefore, one can take advantage of the phase modulation to control the probe light dispersing into the required high orders. This proposed model is appropriate to be utilized as an all-optical switch and router in optical networking and communication based on microwave field.


  1. 1.
    L. Deng, M.G. Payne, W.R. Garrett, Phys. Rev. A 64, 023807 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    T. Naseri, S.H. Asadpour, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 30, 641 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wu, J. Saldana, Y. Zhu, Phys. Rev. A 67, 013811 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J.W.R. Tabosa, A. Lezama, G.C. Cardoso, Opt. Commun. 165, 59 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    G.C. Cardoso, J.W.R. Tabosa, Phys. Rev. A 65, 033803 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    J. Sheng, J. Wang, M.-A. Miri, D.N. Christodoulides, M. Xiao, Opt. Express 23, 19777 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L. Zhao, Sci. Rep. 8, 3073 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    R. Sadighi-Bonabi, T. Naseri, M. Navadeh-Toupchi, Appl. Opt. 54, 368 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    T. Naseri, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 31, 2430 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, Sh. Gong, Opt. Express 21, 12249 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Sh. Kuang, Ch. Jin, Ch. Li, Phys. Rev. A 84, 033831 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    T. Naseri, R. Moradi, Superlattices Microstruct. 101, 592 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Ziauddin, Sh. Qamar, S. Qamar, Phys. Rev. A 94, 033823 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    F. Bozorgzadeh, M. Sahrai, Phys. Rev. A 98, 043822 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J. Lim, H-g. Lee, J. Ahn, J. Kor. Phys. Soc. 63, 867 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Fan, S. Kumar, J. Sedlacek, H. Kubler, S. Karimkashi, J.P. Shaffer, J. Phys. B 48, 202001 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Nat. Phys. 8, 819 (2012)CrossRefGoogle Scholar
  19. 19.
    G.-L. Cheng, L. Cong, A.-X. Chen, J. Phys. B 49, 085501 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    J.-Ch. Wu, T.-T. Hu, Laser Phys. Lett. 15, 065202 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    L. Wang, F. Zhou, P. Hu, Y. Niu, Sh. Gong, J. Phys. B 47, 225501 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Qiu, G. Yang, J. Phys. B 48, 115504 (2015)CrossRefGoogle Scholar
  23. 23.
    H.Y. Ling, Y.-Q. Li, M. Xiao, Phys. Rev. A 57, 1338 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    L. Zhang, Y. Jiang, R. Wan, S. Tian, B. Shang, X. Zhang, J. Gao, Y. Niu, S. Gong, J. Phys. B 44, 135505 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations