Advertisement

Generalized geodesic radiating models

  • A. B. Mahomed
  • S. D. MaharajEmail author
  • R. Narain
Regular Article
  • 13 Downloads

Abstract.

The Einstein field equations and junction conditions are studied for a radiating object in which particles are travelling in geodesic motion. We consider the general case including the effects of gravity, the cosmological constant and the electromagnetic field. The boundary condition is shown to be a Riccati equation in general. A transformation reduces the boundary condition to a simpler equation. Several families of new exact solutions are found, both explicitly and implicitly. The exact solutions can be written in terms of elementary functions, elliptic integrals and Gaussian hypergeometric functions. We find that the cosmological constant and charge affects the gravitational behaviour of the model. We identify earlier models as special cases in this analysis.

Notes

References

  1. 1.
    N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    S. Thirukkanesh, S.S. Rajah, S.D. Maharaj, J. Math. Phys. 53, 032506 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Gen. Relativ. Gravit. 46, 1733 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S.D. Maharaj, A.K. Tiwari, R. Mohanlal, R. Narain, J. Math. Phys. 57, 092501 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Mohanlal, R. Narain, S.D. Maharaj, J. Math. Phys. 58, 072503 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Mohanlal, S.D. Maharaj, A.K. Tiwari, R. Narain, Gen. Relativ. Gravit. 48, 87 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    K.P. Reddy, M. Govender, S.D. Maharaj, Gen. Relativ. Gravit. 47, 35 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Govender, S.D. Maharaj, R. Maartens, Class. Quantum Grav. 15, 323 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Kolassis, N.O. Santos, D. Tsoubelis, Astrophys. J. 327, 755 (1988)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    T. Grammenos, C.A. Kolassis, Phys. Lett. A 169, 5 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N.F. Naidu, M. Govender, K.S. Govinder, Int. J. Mod. Phys. D 15, 1053 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    S. Thirukkanesh, S.D. Maharaj, J. Math. Phys. 50, 022502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Thirukkanesh, S.D. Maharaj, J. Math. Phys. 51, 072502 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Gen. Relativ. Gravit. 46, 1650 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    B.V. Ivanov, Astrophys. Space Sci. 361, 18 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Tiwari, S.D. Maharaj, Eur. Phys. J. Plus 132, 493 (2017)CrossRefGoogle Scholar
  17. 17.
    S.N. Nayak, P.K. Parida, P.K. Panda, Int. J. Mod. Phys. E 24, 1550068 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Govender, S. Thirukkanesh, Int. J. Theor. Phys. 48, 3558 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Thirukkanesh, S. Moopanar, M. Govender, Pramana J. Phys. 79, 223 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A.K.G. de Oliviera, N.O. Santos, Astrophys. J. 312, 640 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    M. Sharif, S. Iftikhar, Astrophys. Space Sci. 357, 79 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S.M. Shah, G. Abbas, Astrophys. Space Sci. 363, 176 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    S. Thirukkanesh, M. Govender, Int. J. Mod. Phys. D 22, 1350087 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Nyonyi, S.D. Maharaj, K.S. Govinder, Eur. Phys. J. 73, 2637 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Nyonyi, S.D. Maharaj, K.S. Govinder, Eur. Phys. J. 74, 2952 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    B.V. Ivanov, Eur. Phys J. C 79, 255 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    V. Zitha, S.D. Maharaj, M. Govender, submitted to Int. J. Mod. Phys. D (2019)Google Scholar
  28. 28.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Elsevier Academic Press, 2007)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations