Advertisement

Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes

  • Oscar Zi Shao Ong
  • Kelly Yee
  • Ali FarajpourEmail author
  • Mergen H. Ghayesh
  • Hamed Farokhi
Regular Article
  • 9 Downloads

Abstract.

This article aims to analyse the global nonlocal dynamics of imperfect nanoscale fluid-conveying nanotubes subject to pulsatile flow. The nanotubes are assumed to be viscoelastic. Utilising nonlocal strain gradient theory, Beskok-Karniadakis assumptions, Kelvin-Voigt scheme and Euler-Bernoulli theory, the coupled size-dependent equations are presented to account for the size effects for the nanoscale fluid and solid. Additionally, Coriolis and centrifugal accelerations, imperfection effects are considered in this article. Using different parameters, the response of the system is plotted and investigated. This investigation shows that the bifurcation response for transverse and longitudinal direction is highly dependent on the imperfection of nanotubes, the velocity and frequency of pulsatile flow. Moreover, varying different velocity components results in different responses. The preliminary results show that imperfections in fluid-conveying nanotubes reduce the chaos region.

References

  1. 1.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks et al., Science 284, 1340 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    S. Joseph, N. Aluru, Nano Lett. 8, 452 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Longhurst, N. Quirke, Nano Lett. 7, 3324 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    N. Moldovan, K.-H. Kim, H.D. Espinosa, J. Microelectromech. Syst. 15, 204 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Kamali, M. Shamsi, A. Saidi, Eur. Phys. J. Plus 133, 110 (2018)CrossRefGoogle Scholar
  7. 7.
    M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Eur. Phys. J. Plus 132, 393 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    A. Hadi, M.Z. Nejad, M. Hosseini, Int. J. Eng. Sci. 128, 12 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Farajpour, A. Shahidi, F. Tabataba’i-Nasab, A. Farajpour, Eur. Phys. J. Plus 133, 219 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Ebrahimi, M.R. Barati, P. Haghi, Eur. Phys. J. Plus 131, 383 (2016)CrossRefGoogle Scholar
  11. 11.
    M.F. Oskouie, R. Ansari, H. Rouhi, Eur. Phys. J. Plus 133, 336 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 133, 231 (2018)CrossRefGoogle Scholar
  13. 13.
    M.H. Ghayesh, A. Farajpour, Int. J. Eng. Sci. 137, 8 (2019)CrossRefGoogle Scholar
  14. 14.
    H. Farokhi, M.H. Ghayesh, Commun. Nonlinear Sci. Numer. Simul. 59, 592 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Panda, R. Kar, J. Sound Vib. 309, 375 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bajaj, Dyn. Stab. Syst. 2, 19 (1987)ADSGoogle Scholar
  17. 17.
    N.S. Namachchivaya, W. Tien, J. Fluids Struct. 3, 609 (1989)CrossRefGoogle Scholar
  18. 18.
    D. Gorman, J. Reese, Y. Zhang, J. Sound Vib. 230, 379 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    J. Luczko, A. Czerwiński, J. Fluids Struct. 70, 235 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M. Asghari, M. Ahmadian, M. Kahrobaiyan, M. Rahaeifard, Mater. Des. 31, 2324 (2010)CrossRefGoogle Scholar
  21. 21.
    L.-L. Ke, Y.-S. Wang, Compos. Struct. 93, 342 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Salamat-talab, F. Shahabi, A. Assadi, Appl. Math. Model. 37, 507 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Farajpour, A. Shahidi, A. Farajpour, Mater. Res. Express 5, 035026 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 123, 197 (2018)CrossRefGoogle Scholar
  25. 25.
    M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 86, 60 (2015)CrossRefGoogle Scholar
  26. 26.
    M.H. Ghayesh, H. Farokhi, A. Gholipour, M. Tavallaeinejad, Int. J. Eng. Sci. 122, 56 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Gholipour, H. Farokhi, M.H. Ghayesh, Nonlinear Dyn. 79, 1771 (2015)CrossRefGoogle Scholar
  28. 28.
    T.-Z. Yang, S. Ji, X.-D. Yang, B. Fang, Int. J. Eng. Sci. 76, 47 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Mashrouteh, M. Sadri, D. Younesian, E. Esmailzadeh, Nonlinear Dyn. 85, 1007 (2016)CrossRefGoogle Scholar
  30. 30.
    M.H. Ghayesh, Microsyst. Technol. 24, 1743 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 127, 127 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Farokhi, M.H. Ghayesh, A. Gholipour, S. Hussain, Int. J. Eng. Sci. 112, 1 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Farokhi, M.H. Ghayesh, S. Hussain, Int. J. Eng. Sci. 106, 29 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Thongyothee, S. Chucheepsakul, T. Li, Adv. Mater. Res. 747, 257 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Ece, M. Aydogdu, Acta Mech. 190, 185 (2007)CrossRefGoogle Scholar
  36. 36.
    L. Wang, Physica E 41, 1835 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    H.-L. Lee, W.-J. Chang, J. Appl. Phys. 103, 024302 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Zhang, G. Liu, X. Xie, Phys. Rev. B 71, 195404 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour., Mech. Adv. Mater. Struct. 26, 1469 (2019)CrossRefGoogle Scholar
  40. 40.
    M. Farajpour, A. Shahidi, A. Farajpour., Eur. Phys. J. Plus 134, 218 (2019)CrossRefGoogle Scholar
  41. 41.
    L. Li, X. Li, Y. Hu, Int. J. Eng. Sci. 102, 77 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Simşek, Int. J. Eng. Sci. 105, 12 (2016)CrossRefGoogle Scholar
  43. 43.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  44. 44.
    M.H. Ghayesh, H. Farokhi, A. Farajpour, Eur. Phys. J. Plus 134, 179 (2019)CrossRefGoogle Scholar
  45. 45.
    A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Mech. Sci. 150, 510 (2019)CrossRefGoogle Scholar
  46. 46.
    H.-L. Lee, W.-J. Chang, Physica E 41, 529 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    M. Rafiei, S.R. Mohebpour, F. Daneshmand, Physica E 44, 1372 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    A. Farajpour, A. Rastgoo, M. Farajpour, Compos. Struct. 180, 179 (2017)CrossRefGoogle Scholar
  49. 49.
    H. Askari, E. Esmailzadeh, Compos. Part B: Eng. 113, 31 (2017)CrossRefGoogle Scholar
  50. 50.
    W. Xia, L. Wang, Comput. Mater. Sci. 49, 99 (2010)CrossRefGoogle Scholar
  51. 51.
    F. Liang, Y. Su, Appl. Math. Model. 37, 6821 (2013)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    M.H. Ghayesh, Int. J. Mech. Sci. 140, 339 (2018)CrossRefGoogle Scholar
  53. 53.
    M.H. Ghayesh, Int. J. Eng. Sci. 124, 115 (2018)CrossRefGoogle Scholar
  54. 54.
    M.H. Ghayesh, H. Farokhi, A. Gholipour, Int. J. Eng. Sci. 110, 35 (2017)CrossRefGoogle Scholar
  55. 55.
    M.H. Ghayesh, H. Farokhi, A. Gholipour, Int. J. Mech. Sci. 122, 370 (2017)CrossRefGoogle Scholar
  56. 56.
    H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 99, 39 (2016)CrossRefGoogle Scholar
  57. 57.
    H. Farokhi, M.H. Ghayesh, Int. J. Mech. Mater. Des. 13, 43 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of AdelaideAdelaideAustralia
  2. 2.Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneUK

Personalised recommendations