Advertisement

Effects of initial stresses on the electromechanical coupling coefficient of SH wave propagation in multilayered PZT-5H structures

  • Cherif Othmani
  • He Zhang
  • Chaofeng LüEmail author
  • Farid Takali
Regular Article
  • 3 Downloads

Abstract.

The electromechanical coupling factor (K2) presents a key parameter in acoustic devices that reflects the influence of piezoelectricity on the phase velocity of elastic waves. The higher this coefficient, the stronger the dependence of the characteristics of wave propagation on the electric-system parameters. Here, we investigate numerically K2 for third- and fourth-order shear wave modes (SH2 and SH3) in arbitrarily anisotropic multilayered PZT-5H laminates with various orientations. The open-circuit (OC) and short-circuit (SC) are applied to determine this key parameter, while the SH2 and SH3 are chosen because they have a higher K2 in comparison with other SHm modes. Additionally, the effects of initial stresses are taken into account. We find that the initial stress has a significant influence on the SHm (m = 2, 3 modes, especially for thick laminates. The characteristics of SH2 and SH3 modes are analyzed for different thickness ratios of (010)-[100] to (0 - 10 -[100] and periods of PZT-5H layered structures. Results show that K2 varies with the thickness ratio and periods of the laminates. Overall, K2 can reach about 30% and 44% for SH2 and SH3 modes in a laminate with unit thickness ratio and period. Moreover, the sensitivity of K2 to the thickness of the middle layer is discussed in detail. The mechanical stresses, mechanical displacements, electric displacements and electric potentials for SH2 mode are discussed as illustrative examples. Results demonstrate that ([(010)-[100]/(0 - 10 -[100]/(010)-[100])N structures have some useful properties in the design of acoustic wave constructed from piezoelectric materials.

References

  1. 1.
    J. Curie, P. Curie, Bull. Soc. Miner. France 3-4, 90 (1880)Google Scholar
  2. 2.
    G. Lippmann, Ann. Chim. Phys. 24, 145 (1881)Google Scholar
  3. 3.
    C.M. Lin, W.C. Lien, V.V. Felmetsger, M.A. Hopcroft, D.G. Senesky, A.P. Pisano, Appl. Phys. Lett. 97, 141907 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. Aubert, J. Bardong, O. Legrani, O. Elmazria, M.B. Assouar, G. Bruckner, A. Talbi, J. Appl. Phys. 114, 014505 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    P. Hauptmann, A. Lucklum, A. Piittmer, B. Henning, Sensors Actuat. A 67, 32 (1998)CrossRefGoogle Scholar
  6. 6.
    I.T. Tang, H.J. Chen, W.C. Hwang, Y.C. Wang, M.P. Houng, Y.H. Wang, J. Cryst. Growth 262, 461 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    C.W. Lim, L.H. He, Int. J. Mech. Sci. 43, 2479 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Sun, X. Xu, C.W. Lim, Z. Zhou, S. Xiao, Compos. Struct. 141, 221 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Berlincourt, in Ultrasonic Transducer Materials, edited by O.E. Mattiat (Springer, Boston, 1971) Chapt. 2, p. 63,  https://doi.org/10.1007/978-1-4757-0468-6_2 CrossRefGoogle Scholar
  10. 10.
    C. Othmani, F. Takali, A. Njeh, Optik 148, 63 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 132, 88 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Wenjun., L. Xu., S. Shengping, Philos. Mag. 97, 3186 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Wenjun, D. Qian, L. Xu, S. Shengping, Smart Mater. Struct. 27, 1 (2018)Google Scholar
  14. 14.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 133, 97 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Othmani, F. Takali, A. Njeh, Eur. Phys. J. Plus 132, 504 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 106, 86 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 111, 396 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Optik 142, 401 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    C. Liu, Z. Bian, W. Chen, C. Lü, Compos. Struct. 113, 145 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, W. Chen, C. Lü, Composites Part B 43, 3001 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Singhal, S.A. Sahu, S. Chaudhary, Composites Part B 144, 19 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Singhal, S.A. Sahu, S. Chaudhary, Compos. Struct. 184, 714 (2018)CrossRefGoogle Scholar
  24. 24.
    F. Takali, S. Msedi, C. Othmani, A. Njeh, W. Donner, M.H. Ben Ghozlen, Acta Mech. 230, 1027 (2019)CrossRefGoogle Scholar
  25. 25.
    B. Masserey, P. Fromme, NDT & E Inter. 42, 564 (2009)CrossRefGoogle Scholar
  26. 26.
    D. Singh, M. Castaings, C. Bacon, NDT & E Int. 44, 394 (2011)CrossRefGoogle Scholar
  27. 27.
    O.S. Narayanaswamy, J. Am. Ceram. Soc. 61, 146 (1978)CrossRefGoogle Scholar
  28. 28.
    J.S. Wang, A.G. Evans, Acta Mater. 46, 4993 (1998)CrossRefGoogle Scholar
  29. 29.
    P. Fornara, A. Poncet, in Proceedings of the International Electron Devices Meeting (IEEE, 1996) pp. 73--76Google Scholar
  30. 30.
    F.S. Hickernell, Thin films for SAW devices, in Advances in Surface Acoustic Wave Technology, Systems and Applications, edited by Clemens C.W. Ruppel, Tor A. Fjeldly (World Scientific, 2000) pp. 51--100  https://doi.org/10.1142/4518 CrossRefGoogle Scholar
  31. 31.
  32. 32.
    H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Belloa, Appl. Phys. Lett. 91, 201918 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Y.Y. Zhou, C.F. Lü, W.Q. Chen, Compos. Struct. 94, 2736 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Yu, Ch. Zhang, Appl. Math. Model. 38, 464 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S.A. Sahu, A. Singhal, S. Chaudhary, J. Intell. Mater. Syst. Struct. 29, 423 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Othmani, S. Dahmen, A. Njeh, M.H. Ben Ghozlen, Mech. Res. Commun. 74, 27 (2016)CrossRefGoogle Scholar
  37. 37.
    C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Physica B 496, 82 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    C. Othmani, A. Njeh, M.H. Ben Ghozlen, Aerospace Sci. Technol. 78, 377 (2018)CrossRefGoogle Scholar
  39. 39.
    F. Takali, A. Njeh, D. Schneider, M.H. Ben Ghozlen, Acta Acust. united Ac. 98, 223 (2012)CrossRefGoogle Scholar
  40. 40.
    I. Ben salah, A. Njeh, M.H. Ben Ghozlen, EPJ Web of Conferences 29, 00044 (2012)CrossRefGoogle Scholar
  41. 41.
    D. Royer, D. Dieulesaint, Automatique appliquée, tome 1 (Masson, 1997)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cherif Othmani
    • 1
  • He Zhang
    • 1
  • Chaofeng Lü
    • 1
    • 2
    • 3
    Email author
  • Farid Takali
    • 4
    • 5
  1. 1.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina
  3. 3.Soft Matter Research CenterZhejiang UniversityHangzhouChina
  4. 4.Laboratory of Physics of Materials, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  5. 5.National School of Engineers of Sfax (ENIS)SfaxTunisia

Personalised recommendations