Advertisement

Innovative operational matrices based computational scheme for fractional diffusion problems with the Riesz derivative

  • M. HamidEmail author
  • M. UsmanEmail author
  • T. Zubair
  • R. U. Haq
  • W. Wang
Regular Article
  • 7 Downloads

Abstract.

The computational methods based on operational matrices are promising tools to tackle the fractional order differential equations and they have gained increasing interest among the mathematical community. Herein, an efficient and precise computational algorithm based on a new kind of polynomials together with the collocation technique is presented for time-space fractional partial differential equations with the Riesz derivative. The method is proposed with the aid of a new operational matrix of the derivative using Chelyshkov polynomials (CPs) in the Caputo sense. The operational matrices of the derivative, exact and approximate, are derived via two different ways for integer and non-integer orders. The fractional problems under study have been converted into the corresponding nonlinear algebraic system of equations and solved by means of the collocation technique. The convergence and error bound are analyzed for the suggested computational method while a comparative study is included in our work to show the accuracy and efficiency of said method. The attained results confirm that the suggested technique is very accurate, efficient and reliable. As a suitable tool, it could be adopted to obtain the solutions for a class of the fractional order partial differential (linear and nonlinear) equations arising in engineering and applied sciences.

References

  1. 1.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & sons, USA, 1993)Google Scholar
  2. 2.
    E.C. De Oliveira, J.A.T. Machado, Math. Prob. Eng. 2014, 238459 (2014)CrossRefGoogle Scholar
  3. 3.
    H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, Commun. Nonlinear Sci. Numer. Simul. 64, 213 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    C. Berg, H.L. Pedersen, J. Comput. Appl. Math. 133, 219 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S.B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E 69, 036126 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    M. Raberto, E. Scalas, F. Mainardi, Physica A 314, 749 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1413 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A. Dzielinski, D. Sierociuk, G. Sarwas, Bull. Polish Acad. Sci.: Techn. Sci. 58, 583 (2010)Google Scholar
  9. 9.
    D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Philos. Trans. R. Soc. A 371, 20120146 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)Google Scholar
  11. 11.
    A. Atangana, D. Baleanu, arXiv:1602.03408 (2016)Google Scholar
  12. 12.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  13. 13.
    S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006)MathSciNetGoogle Scholar
  14. 14.
    A. Atangana, J.F. Gomez-Aguilar, Numer. Methods Partial Differ. Equ. 34, 1502 (2018)CrossRefGoogle Scholar
  15. 15.
    M.A. Khan, A. Atangana, Entropy 21, 303 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    K.M. Owolabi, A. Atangana, Chaos 29, 023111 (2019)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, A. Alsaedi, Appl. Math. Comput. 257, 119 (2015)MathSciNetGoogle Scholar
  18. 18.
    S. Arshad, J. Huang, A.Q.M. Khaliq, Y. Tang, J. Comput. Phys. 350, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Hamid, M. Usman, T. Zubair, S.T. Mohyud-Din, Ain Shams Eng. J. 9, 2323 (2018)CrossRefGoogle Scholar
  20. 20.
    U. Saeed, M.U. Rehman, Q. Din, Eng. Comput. 35, 2349 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Usman, M. Hamid, R.U. Haq, W. Wang, Eur. Phys. J. Plus 133, 327 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Hamid, M. Usman, T. Zubair, R.U. Haq, A. Shafee, Physica A 11, 121320 (2019)CrossRefGoogle Scholar
  23. 23.
    C. Cattani, T.A. Sulaiman, H.M. Baskonus, H. Bulut, Eur. Phys. J. Plus 133, 228 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Hamid, M. Usman, T. Zubair, Z.H. Khan, W. Wang, J. Comput. Design Eng. (2019)  https://doi.org/10.1016/j.jcde.2019.03.004
  25. 25.
    A. Allwright, A. Atangana Discr. Contin. Dyn. Syst. S (2019)  https://doi.org/10.3934/dcdss.2020025 CrossRefGoogle Scholar
  26. 26.
    K.M. Owolabi, A. Atangana, Discr. Contin. Dyn. Syst. S 12, 567 (2019)Google Scholar
  27. 27.
    U. Saeed, Int. J. Wavelets, Multi-Resolution Inf. Process. 15, 1750043 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M.H. Heydari, M.R. Hooshmandasl, C. Cattani, Proc. Math. Sci. 128, 26 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Usman, M. Hamid, T. Zubair, R.U. Haq, W. Wang, Eur. Phys. J. Plus 134, 279 (2019)CrossRefGoogle Scholar
  30. 30.
    M. Hamid, M. Usman, R.U. Haq, Z.H. Khan, W. Wang, Appl. Math. Mech. 40, 1211 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Hamid, M. Usman, R.U. Haq, Phys. Scr. 94, 115219 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    F.D. Cunden, F. Mezzadri, N. O’Connell, N. Simm, Commun. Math. Phys. 369, 1091 (2019)CrossRefGoogle Scholar
  33. 33.
    V.S. Chelyshkov, Electron. Trans. Numer. Anal. 25, 17 (2006)MathSciNetGoogle Scholar
  34. 34.
    E. Gokmen, G. Yuksel, M. Sezer, J. Comput. Appl. Math. 311, 354 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Mohammadi, Comput. Appl. Math. 37, 4122 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi, J. Vibr. Control 24, 5030 (2018)Google Scholar
  37. 37.
    E. Kreyszig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina
  2. 2.BIC-ESAT, College of EngineeringPeking UniversityBeijingChina
  3. 3.State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering SciencePeking UniversityBeijingChina
  4. 4.Institute of Ocean ResearchPeking UniversityBeijingChina
  5. 5.Department of Electrical EngineeringBahria UniversityIslamabadPakistan

Personalised recommendations