Advertisement

The gauged Thirring model in thermodynamic equilibrium

  • C. A. BoninEmail author
  • B. M. Pimentel
Regular Article
  • 11 Downloads

Abstract.

We study the gauged Thirring model (also known as Kondo model) in thermodynamic equilibrium using the Matsubara-Fradkin-Nakanishi formalism. In this formulation, both the temperature and the chemical potential are kept to be nonvanishing. Starting from the field equations, we write down the Dyson-Schwinger-Fradkin equations, the Ward-Fradkin-Takahashi identities, and expressions for the thermodynamical generating functional. We find the partition function of the theory and study some key features of its exact two-point Green functions, including the Landau-Khalatnikov/Fradkin transformations and some limiting cases of interest as well. In particular, we show that we can recover results from both the Schwinger and the Thirring models from the Kondo model in thermodynamic equilibrium.

Notes

References

  1. 1.
    F. Strocchi, Selected Topics on the General Properties of Quantum Field Theories (World Scientific Publishing Co. Pte. Ltd., 1993)Google Scholar
  2. 2.
    E. Abdalla, M.C.B. Abdalla, K.D. Rothe, Non-perturbative Methods in 2 Dimensional Quantum Field Theory, 2nd. edition (World Scientific Publishing Co. Pte. Ltd., 2001)Google Scholar
  3. 3.
    K. Kondo, Nucl. Phys. B 450, 251 (1995)ADSGoogle Scholar
  4. 4.
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964)ADSGoogle Scholar
  5. 5.
    P.W. Anderson, J. Phys. C 3, 2436 (1970)ADSGoogle Scholar
  6. 6.
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)ADSGoogle Scholar
  7. 7.
    W.E. Thirring, Ann. Phys. (N.Y.) 3, 91 (1958)ADSGoogle Scholar
  8. 8.
    E. Fermi, Nuovo Cimento 11, 1 (1934)Google Scholar
  9. 9.
    J. Schwinger, Phys. Rev. 128, 2425 (1962)ADSMathSciNetGoogle Scholar
  10. 10.
    K. Johnson, Nuovo Cimento 20, 773 (1961)Google Scholar
  11. 11.
    C.M. Sommerfield, Ann. Phys. 26, 1 (1963)ADSMathSciNetGoogle Scholar
  12. 12.
    J.H. Lowenstein, J.A. Swieca, Ann. Phys. 62, 172 (1971)ADSGoogle Scholar
  13. 13.
    S. Coleman, R. Jackiw, L. Susskind, Ann. Phys. 93, 267 (1975)ADSGoogle Scholar
  14. 14.
    S. Coleman, Phys. Rev. D 11, 2088 (1975)ADSGoogle Scholar
  15. 15.
    H. Arodz, Acta Phys. Pol. B 10, 983 (1979)Google Scholar
  16. 16.
    A.Z. Capri, R. Ferrari, Nuovo Cimento A 62, 273 (1981)ADSGoogle Scholar
  17. 17.
    M. Soldate, Ann. Phys. 158, 433 (1984)ADSMathSciNetGoogle Scholar
  18. 18.
    C. Jayewardena, Helv. Phys. Acta 61, 636 (1988)MathSciNetGoogle Scholar
  19. 19.
    K. Bardakci, M. Crescimanno, Nucl. Phys. B 313, 269 (1989)ADSGoogle Scholar
  20. 20.
    I. Sachs, A. Wipf, Phys. Lett. B 326, 105 (1994)ADSMathSciNetGoogle Scholar
  21. 21.
    J.V. Steele, A. Subramanian, I. Zahed, Nucl. Phys. B 452, 545 (1995)ADSGoogle Scholar
  22. 22.
    K. Kondo, Prog. Theor. Phys. 94, 899 (1995)ADSGoogle Scholar
  23. 23.
    K. Ikegami, K. Kondo, A. Nakamura, Prog. Theor. Phys. 94, 203 (1995)Google Scholar
  24. 24.
    L.A. Manzoni, B.M. Pimentel, J.L. Tomazelli, Eur. Phys. J. C 8, 353 (1999)ADSGoogle Scholar
  25. 25.
    J.T. Lunardi, B.M. Pimentel, Int. J. Mod. Phys. A 15, 3263 (2000)ADSGoogle Scholar
  26. 26.
    L.A. Manzoni, B.M. Pimentel, J.L. Tomazelli, Eur. Phys. J. C 12, 701 (2000)ADSGoogle Scholar
  27. 27.
    R. Bufalo, B.M. Pimentel, Int. J. Mod. Phys. A 29, 1450122 (2014)ADSGoogle Scholar
  28. 28.
    R. Bufalo, R. Casana, B.M. Pimentel, Int. J. Mod. Phys. A 26, 1545 (2011)ADSGoogle Scholar
  29. 29.
    Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996)Google Scholar
  30. 30.
    A. Das, Finite Temperature Field Theory (World Scientific, Singapore, 1999)Google Scholar
  31. 31.
    J.I. Kapusta, C. Gale, Finite-Temperature Field Theory Principles and Applications, 2nd edition (Cambridge University Press, Cambridge, 2006)Google Scholar
  32. 32.
    K. Stam, J. Visser, J. Phys. G 1, L143 (1985)Google Scholar
  33. 33.
    F. Ruiz Ruiz, R.F. Alvarez-Estrada, Phys. Lett. B 180, 153 (1986)ADSMathSciNetGoogle Scholar
  34. 34.
    F. Ruiz Ruiz, R.F. Alvarez-Estrada, Phys. Lett. B 182, 354 (1986)ADSMathSciNetGoogle Scholar
  35. 35.
    F. Ruiz Ruiz, R.F. Alvarez-Estrada, Phys. Rev. D 35, 3161 (1987)ADSGoogle Scholar
  36. 36.
    R.F. Alvarez-Estrada, A.G. Nicola, arXiv:hep-th/9710227 (1997)Google Scholar
  37. 37.
    I. Sachs, A. Wipf, Ann. Phys. 249, 380 (1996)ADSGoogle Scholar
  38. 38.
    I. Sachs, A. Wipf, Helv. Phys. Acta 65, 652 (1992)MathSciNetGoogle Scholar
  39. 39.
    T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)ADSGoogle Scholar
  40. 40.
    E.S. Fradkin, J. Exp. Theor. Phys. 36, 952 (1959)Google Scholar
  41. 41.
    E.S. Fradkin, Nucl. Phys. 12, 465 (1959)Google Scholar
  42. 42.
    N. Nakanishi, Prog. Theor. Phys. 35, 1111 (1966)ADSGoogle Scholar
  43. 43.
    N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theories and Quantum Gravity (World Scientific Publishing Co. Pte. Ltda, Singapore, 1990)Google Scholar
  44. 44.
    C.A. Bonin, B.M. Pimentel, Phys. Rev. D 84, 065023 (2011)ADSGoogle Scholar
  45. 45.
    E.C.G. Stückelberg, Helv. Phys. Acta 11, 225 (1938)Google Scholar
  46. 46.
    E.C.G. Stückelberg, Helv. Phys. Acta 11, 299 (1938)Google Scholar
  47. 47.
    H. Ruegg, M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265 (2004)ADSGoogle Scholar
  48. 48.
    J. Schwinger, Science 113, 479 (1951)Google Scholar
  49. 49.
    J. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetGoogle Scholar
  50. 50.
    J. Schwinger, Phys. Rev. 82, 914 (1951)ADSMathSciNetGoogle Scholar
  51. 51.
    J. Schwinger, Science 153, 949 (1966)ADSGoogle Scholar
  52. 52.
    F.J. Dyson, Phys. Rev. 75, 1736 (1949)ADSMathSciNetGoogle Scholar
  53. 53.
    J.S. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 37, 452 (1951)ADSGoogle Scholar
  54. 54.
    E.S. Fradkin, J. Exp. Theor. Phys. 29, 121 (1955)Google Scholar
  55. 55.
    L.D. Landau, I.M. Khalatnikov, Zh. Eksp. Teor. Fiz. 29, 89 (1955)Google Scholar
  56. 56.
    L.D. Landau, I.M. Khalatnikov, Sov. Phys. JETP 2, 69 (1956)Google Scholar
  57. 57.
    E.S. Fradkin, Zh. Eksp. Teor. Fiz. 29, 258 (1955)Google Scholar
  58. 58.
    E.S. Fradkin, Sov. Phys. JETP 2, 361 (1956)Google Scholar
  59. 59.
    J.C. Ward, Phys. Rev. 78, 182 (1950)ADSMathSciNetGoogle Scholar
  60. 60.
    E.S. Fradkin, J. Exp. Theor. Phys. 29, 258 (1955)Google Scholar
  61. 61.
    Y. Takahashi, Nuovo Cimento 6, 371 (1957)Google Scholar
  62. 62.
    H.M. Fried, Functional Methods and Models in Quantum Field Theory (MIT Press, 1972)Google Scholar
  63. 63.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, 1982)Google Scholar
  64. 64.
    R. de Oliveira, Modelos de Schwinger, Thirring e Kondo à Temperatura Finita: Um Estudo, Doctorate Thesis (2007) http://hdl.handle.net/11449/138367

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rua Cláudia Pietrobelli MongruelPiraí do SulBrazil
  2. 2.São Paulo State UniversityInstitute for Theoretical Physics (IFT/UNESP)São PauloBrazil

Personalised recommendations