Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion

  • E. K. LenziEmail author
  • M. K. Lenzi
  • R. S. Zola
Regular Article


We investigate the diffusion phenomenon in a heterogeneous system composed by two different media in contact. We consider the dynamics of the particles for each medium governed by generalized diffusion equations, which can be related to fractional diffusion equations. The interface separating the different media defines the boundary conditions to be satisfied by the bulk equations. In particular, we analyze the situation for which one medium offers resistance to the passage of particles to the other. The results obtained in this scenario exhibit a rich variety of behaviors which may be connected to anomalous diffusion.


  1. 1.
    R.B. Bird, W.S. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edition (John Wiley & Sons, New York, NY, USA, 2007)Google Scholar
  2. 2.
    H.C. Berg, Random Walks in Biology, 1st edition (Princeton University Press, New Jersey, NY, USA, 1993)Google Scholar
  3. 3.
    J.A. Wesseling, R. Krishna, Mass Transfer, 1st edition (Ellis Horwood, West Sussex, UK, 1990)Google Scholar
  4. 4.
    V. Kafarov, Fundamentals of Mass Transfer, 2nd edition (MIR Publishers, Moscow, Russia, 1985)Google Scholar
  5. 5.
    V.C. Friesen, D.P. Leitoles, G. Gonalves, E.K. Lenzi, M.K. Lenzi, Math. Prob. Eng. 2015, 549562 (2015)CrossRefGoogle Scholar
  6. 6.
    F.R. Reis, M.K. Lenzi, G.I.B. Muniz, S. Nisgoski, M.L. Masson, Drying Technol. 30, 13 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Middleman An Introduction to Mass and Heat Transfer, 1st edition (John Wiley & Sons, New York, NY, USA, 1997)Google Scholar
  8. 8.
    E.K. Lenzi, H.V. Ribeiro, J. Martins, M.K. Lenzi, G.G. Lenzi, S. Specchia, Chem. Eng. J. 172, 1083 (2011)CrossRefGoogle Scholar
  9. 9.
    D.S. Banks, C. Fradin, Biophys. J. 89, 2960 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    E.N. Lightfoot, Transport Phenomena and Living Systems, 1st edition (John Wiley and Sons, New York, USA, 1974)Google Scholar
  11. 11.
    M. Giona, H.E. Roman, Chem. Eng. J. 49, 1 (1992)CrossRefGoogle Scholar
  12. 12.
    J. Crank, Free and Moving Boundary Problems, 1st edition (Oxford University Press, Oxford, UK, 1984)Google Scholar
  13. 13.
    J.A.T. Machado, A.M.S.F. Galhano, M.S.F. Alexandra, J.J. Trujillo, Scientometrics 98, 577 (2014)CrossRefGoogle Scholar
  14. 14.
    E.K. Lenzi, D.S. Vieira, M.K. Lenzi, G. Goncalves, D.P. Leitoles, Therm. Sci. 19, S1 (2015)CrossRefGoogle Scholar
  15. 15.
    E.K. Lenzi, M.A.F. dos Santos, M.K. Lenzi, D.S. Vieira, L.R. da Silva, J. King Saud Univ. - Science 28, 3 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Hristov, Therm. Sci. 21, 69 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Hristov, Fund. Inform. 151, 371 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Hristov, Prog. Fract. Differ. Appl. 3, 19 (2017)CrossRefGoogle Scholar
  19. 19.
    I. Podlubny, Fractional Differential Equations, 1st edition (Academic Press, San Diego, CA, USA, 1998)Google Scholar
  20. 20.
    X.J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013)CrossRefGoogle Scholar
  21. 21.
    X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and their Applications, 1st edition (Academic Press, New York, USA, 2015)Google Scholar
  22. 22.
    X.J. Yang, J.T. Machado, J. Hristov, Nonlinear Dyn. 84, 3 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Cattani, H.M. Srivastava, X.J. Yang, Fractional Dynamics, 1st edition (de Gruyter, New York, USA, 2015)CrossRefGoogle Scholar
  24. 24.
    L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, London, 2018)Google Scholar
  25. 25.
    R. Meztler, J. Klafter, Phys. Rep. 339, 1 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications, 1st edition (Springer, New York, NY, USA, 2010)CrossRefGoogle Scholar
  27. 27.
    M.D. Mikhailov, M.N. Ozisik, Unified Analysis and Solutions of Heat and Mass Diffusion, 1st edition (Dover Publications, New York, USA, 1993)Google Scholar
  28. 28.
    M.N. Ozisik, Boundary Value Problems of Heat Conduction, 1st edition (Dover Publications, New York, USA, 1989)Google Scholar
  29. 29.
    A.V. Luikov, Analytical Heat Diffusion Theory, 1st edition (Academic Press, New York, USA, 1968)Google Scholar
  30. 30.
    R.G. Rice, D.D. Do, Applied Mathematics and Modeling for Chemical Engineers, 1st edition (John Wiley and Sons, New York, USA, 1995)Google Scholar
  31. 31.
    A. Varma, M. Morbidelli, Mathematical Methods in Chemical Engineering, 1st edition (Oxford University Press, Oxford, UK, 1997)Google Scholar
  32. 32.
    J.R. Graef, L. Kong, B. Yang, Appl. Math. Lett. 56, 49 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C.S. Goodrich, Appl. Math. Lett. 25, 1101 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, 4th edition (John Wiley & Sons, New York, NY, USA, 2006)Google Scholar
  35. 35.
    X.J. Yang, D. Baleanu, H.M. Srivastava, Appl. Math. Lett. 47, 54 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    X.J. Yang, J.T. Machado, H.M. Srivastava, Appl. Math. Comput. 274, 143 (2016)MathSciNetGoogle Scholar
  37. 37.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  38. 38.
    A.M. Tawfik, H. Fichtner, A. Elhanbaly, R. Schlickeiser, Eur. Phys. J. Plus 133, 209 (2018)CrossRefGoogle Scholar
  39. 39.
    K.M. Saad, Eur. Phys. J. Plus 133, 94 (2018)CrossRefGoogle Scholar
  40. 40.
    Y. Povstenko, Entropy 17, 4028 (2015)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Crank, The Mathematics of Diffusion, 2nd edition (Oxford University Press, Oxford, UK, 1980)Google Scholar
  42. 42.
    A.A. Tateishi, H.V. Ribeiro, E.K. Lenzi, Front. Phys. 5, 52 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
  2. 2.National Institute of Science and Technology for Complex SystemsCentro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  3. 3.Departamento de Engenharia QuímicaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Departamento de FísicaUniversidade Tecnológica Federal do ParanáApucaranaBrazil
  5. 5.National Institute of Science and Technology on Complex FluidsInstituto de Física-USPSão PauloBrazil

Personalised recommendations