Advertisement

On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method

  • M. S. Hashemi
  • Mustafa IncEmail author
  • M. Parto-Haghighi
  • Mustafa Bayram
Regular Article
  • 9 Downloads

Abstract.

In this work we offer a robust numerical algorithm based on the Lie group to solve the time-fractional diffusion-wave (TFDW) equation. Firstly, we use a fictitious time variable \( \xi\) to convert the related variable u(x, t) into a new space with one extra dimension. Then by using a composition of the group preserving scheme (GPS) and a semi-discretization of new variable, we approximate the solutions of the problem. Finally, various numerical experiments are performed to illustrate the power and accuracy of the given method.

References

  1. 1.
    D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, Vol. 5 (World Scientific, 2016)Google Scholar
  2. 2.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Vol. 198 (Academic Press, 1998)Google Scholar
  3. 3.
    F. Mainardi, Appl. Math. Lett. 9, 23 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Jafari, S. Seifi, Commun. Nonlinear Sci. Numer. Simul. 14, 2006 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Momani, Z. Odibat, V.S. Erturk, Phys. Lett. A 370, 379 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Du, W. Cao, Z.-Z. Sun, Appl. Math. Modell. 34, 2998 (2010)CrossRefGoogle Scholar
  7. 7.
    A.H. Bhrawy, M.A. Zaky, R.A. Van Gorder, Numer. Algorithms 71, 151 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Dehghan, M. Abbaszadeh, A. Mohebbi, Numer. Algorithms 73, 445 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    V.R. Hosseini, E. Shivanian, W. Chen, J. Comput. Phys. 312, 307 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Huang, N. An, X. Yu, Appl. Anal. 97, 659 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley-Interscience, 1993)Google Scholar
  12. 12.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus, Vol. 4 (Springer, 2007)Google Scholar
  13. 13.
    J. Losada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  14. 14.
    A. Atangana, D. Baleanu, J. Eng. Mech. 143, D4016005 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 1 (2015)Google Scholar
  16. 16.
    A. Atangana, B. Saad, T. Alkahtani, Arab. J. Geosci. 9, 8 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B. Saad, T. Alkahtani, Chaos, Solitons Fractals 89, 547 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Jefain Julaighim Algahtani, Chaos, Solitons Fractals 89, 552 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Zhang, H.-Q. Zhang, Phys. Lett. A 375, 1069 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Bin Zheng, Chuanbao Wen, Adv. Differ. Equ. 2013, 199 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Jafari, H. Tajadodi, D. Baleanu, A.A. Al-Zahrani, Y.A. Alhamed, A.H. Zahid, Cent. Eur. J. Phys. 11, 1482 (2013)Google Scholar
  23. 23.
    S. Guo, L. Mei, Y. Li, Y. Sun, Phys. Lett. A 376, 407 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Jafari, H. Tajadodi, D. Baleanu, A. Al-Zahrani, Y.A. Alhamed, A.H. Zahid, Rom. Rep. Phys. 65, 1119 (2013)Google Scholar
  25. 25.
    E. Yasar, Y. Yildirim, C.M. Khalique, Results Phys. 6, 322 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    G.-W. Wang, M.S. Hashemi, Pramana 88, 7 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Hashemi, D. Baleanu, J. Optoelectron. Adv. Mater. 18, 383 (2016)Google Scholar
  28. 28.
    M.S. Hashemi, D. Baleanu, Commun. Theor. Phys. 65, 11 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    H. Jafari, N. Kadkhoda, D. Baleanu, Nonlinear Dyn. 81, 1569 (2015)CrossRefGoogle Scholar
  30. 30.
    G.-W. Wang, T.-Z. Xu, Nonlinear Dyn. 76, 571 (2014)CrossRefGoogle Scholar
  31. 31.
    E. Yasar, Y. Yildirim, C.M. Khalique, Results Phys. 6, 322 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    E. Yasar, I.B. Giresunlu, Pramana J. Phys. 87, 17 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Bin, Commun. Theor. Phys. 58, 623 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Eslami, H. Rezazadeh, M. Rezazadeh, S.S. Mosavi, Opt. Quantum Electron. 49, 279 (2017)CrossRefGoogle Scholar
  35. 35.
    A. nazarzadeh, M. Eslam, M. Mirzazadeh, Pramana J. Phys. 81, 225 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S.T.R. Rizvi, K. Ali, S. Bashir, M. Younis, R. Ashraf, M.O. Ahmad, Superlattices Microst. 107, 234 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, E. Darvishi, Therm. Sci. 19, 77 (2015)CrossRefGoogle Scholar
  38. 38.
    M.S. Hashemi, D. Baleanu, J. Comput. Phys. 316, 10 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, Rom. J. Phys. 60, 1289 (2015)Google Scholar
  40. 40.
    B.P. Moghaddam, J.A.T. Machado, Comput. Math. Appl. 73, 1262 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Atangana, J.J. Nieto, Adv. Mech. Eng. (2015)  https://doi.org/10.1177/1687814015613758 CrossRefGoogle Scholar
  42. 42.
    B.P. Moghaddam, J.A.T. Machado, Comput. Math. Appl. 73, 1262 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    C.-C. Tsai, C.-S. Liu, W.-C. Yeih, Comput. Model. Eng. Sci. 56, 131 (2010)Google Scholar
  44. 44.
    A.H. Bhrawy, M.A. Zaky, J.T. Machado, J. Vib. Control 22, 2053 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Bhrawy, M. Zaky, Math. Methods Appl. Sci. 39, 1765 (2016)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A.H. Bhrawy, M.A. Zaky, J.A.T. Machado, J. Optim. Theory Appl. 174, 321 (2017)MathSciNetCrossRefGoogle Scholar
  47. 47.
    M.S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhoug, Chin. J. Phys. 56, 2500 (2018)CrossRefGoogle Scholar
  48. 48.
    B. NawazSyed Tahir Raza Rizvi, K.A. Younis, Opt. Quantum Electron. 50, 204 (2018)CrossRefGoogle Scholar
  49. 49.
    J.-G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, Nonlinear Dyn. 95, 1027 (2019)CrossRefGoogle Scholar
  50. 50.
    M. Mirzazadeh, M. Ekici, A. Sonmezoglu, S. Ortakaya, M. Eslami, A. Biswas, Eur. Phys. J. Plus 131, 166 (2016)CrossRefGoogle Scholar
  51. 51.
    C.-S. Liu, S.N. Atluri, Comput. Model. Eng. Sci. 34, 155 (2008)Google Scholar
  52. 52.
    C.-S. Liu, S.N. Atluri et al., Comput. Model. Eng. Sci. 31, 71 (2008)Google Scholar
  53. 53.
    C.-S. Liu, Comput. Mater. Continua 15, 221 (2010)Google Scholar
  54. 54.
    C.-C. Tsai, C.-S. Liu, W.-C. Yeih, Comput. Model. Eng. Sci. 56, 131 (2010)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran
  2. 2.Department of Mathematics, Science FacultyFirat UniversityElazigTurkey
  3. 3.Department of Computer EngineeringGelisim UniversityIstanbulTurkey

Personalised recommendations