Advertisement

Resolution-scale relativistic formulation of non-differentiable mechanics

  • Mei-Hui Teh
  • Laurent Nottale
  • Stephan LeBohecEmail author
Regular Article
  • 6 Downloads

Abstract.

This article motivates and presents the scale relativistic approach to non-differentiability in mechanics and its relation to quantum mechanics. It stems from the scale relativity proposal to extend the principle of relativity to resolution-scale transformations, which leads to considering non-differentiable dynamical paths. We first define a complex scale-covariant time-differential operator and show that mechanics of non-differentiable paths is implemented in the same way as classical mechanics but with the replacement of the time derivative and velocity with the time-differential operator and associated complex velocity. With this, the generalized form of Newton’s fundamental relation of dynamics is shown to take the form of a Langevin equation in the case of stationary motion characterized by a null average classical velocity. The numerical integration of the Langevin equation in the case of a harmonic oscillator taken as an example reveals the same statistics as the stationary solutions of the Schrödinger equation for the same problem. This motivates the rest of the paper, which shows Schrödinger’s equation to be a reformulation of Newton’s fundamental relation of dynamics as generalized to non-differentiable geometries and leads to an alternative interpretation of the other axioms of standard quantum mechanics in a coherent picture. This exercise validates the scale relativistic approach and, at the same time, it allows to envision macroscopic chaotic systems observed at resolution time-scales exceeding their horizon of predictability as candidates in which to search for quantum-like dynamics and structures.

References

  1. 1.
    L.D. Landau, E.M. Lifshitz, Mechanics, Third Edition: Volume 1, Course of Theoretical Physics, 3 edition (Butterworth-Heinemann, 1976)Google Scholar
  2. 2.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, 1972)Google Scholar
  3. 3.
    V. Fock, The Theory of Space, Time and Gravitation: 2nd Revised Edition (Pergamon, 1964)Google Scholar
  4. 4.
    B. Mandelbrot, Fractals: Form, Chance and Dimension (W. H. Freeman and Co., 1977)Google Scholar
  5. 5.
    L. Nottale, Fractal Space-Time and Microphysics (World Scientific Publishing Company, 1993)Google Scholar
  6. 6.
    L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics (World Scientific Publishing Company, 2011)Google Scholar
  7. 7.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integral (Dover Publication, Inc., 2005) emended edition by D.F. StyerGoogle Scholar
  8. 8.
    E. Nelson, Phys. Rev. 150, 1079 (1966)ADSCrossRefGoogle Scholar
  9. 9.
    L.F. Abbott, M.B. Wise, Am. J. Phys. 49, 37 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    J. Gleick, Chaos: Making a New Science (Penguin Books, 1987)Google Scholar
  11. 11.
    J.M.T. Thompson, Int. J. Bifurc. Chaos 26, 1630035 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Nottale, M.-N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Mo, A. Simha, S. Kheifets, M.G. Raizen, Opt. Express 23, 1888 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    K. Yasue, J. Funct. Anal. 41, 327 (1981)CrossRefGoogle Scholar
  15. 15.
    T. Koide, T. Kodama, K. Tsushima, J. Phys.: Conf. Ser. 626, 012055 (2015)Google Scholar
  16. 16.
    M. McClendon, H. Rabitz, Phys. Rev. A 37, 3479 (1988)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R.P. Hermann, J. Phys. A 30, 3967 (1997)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S.N.T. Al-Rashid, M.A.Z. Habeeb, K.A. Ahmad, J. Quantum Inf. Sci. 1, 7 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Bonilla, O. Rosas-Ortiz, J. Phys.: Conf. Ser. 839, 012009 (2017)Google Scholar
  20. 20.
    S.N.T. Al-Rashid, J. Anbar Univ. Pure Sci. 1, 75 (2007)Google Scholar
  21. 21.
    D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education Inc., 1995)Google Scholar
  22. 22.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley, 1991)Google Scholar
  23. 23.
    L. Nottale, M.-N. Célérier, J. Phys. A 40, 14471 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
  25. 25.
    N.D. Mermin, Phys. Today 38, 38 (1985)CrossRefGoogle Scholar
  26. 26.
    E. Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)ADSCrossRefGoogle Scholar
  27. 27.
    M.-N. Célérier, L. Nottale, Int. J. Mod. Phys. A 25, 4239 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A.E. Caswell, Science 69, 384 (1929)ADSCrossRefGoogle Scholar
  29. 29.
    W.M. Malisoff, Science 70, 328 (1929)ADSCrossRefGoogle Scholar
  30. 30.
    J.B. Penniston, Science 71, 512 (1930)ADSCrossRefGoogle Scholar
  31. 31.
    L. Nottale, G. Schumacher, J. Gay, Astron. Astrophys. 322, 1018 (1997)ADSGoogle Scholar
  32. 32.
    R. Hermann, G. Schumacher, R. Guyard, Astron. Astrophys. 335, 281 (1998)ADSGoogle Scholar
  33. 33.
    L. Nottale, Astron. Astrophys. 361, 379 (2000)ADSGoogle Scholar
  34. 34.
    S. LeBohec, Int. J. Mod. Phys. A 32, 1750156 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    G. Calcagni, M. Ronco, arXiv:1706.02159 [hep-th]Google Scholar
  36. 36.
    G. Amelino-Camelia, G. Calcagni, M. Ronco, Phys. Lett. B 774, 630 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    P.-H. Chavanis, Eur. Phys. J. Plus 132, 286 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Bhattacharya, R. Saha, R. Ghosh, arXiv:1706.02589 [physics.gen-ph]Google Scholar
  39. 39.
    P.-H. Chavanis, arXiv:1706.05900 [gr-qc]Google Scholar
  40. 40.
    G. Duchateau, arXiv:1703.01871 [physics.atom-ph]Google Scholar
  41. 41.
    P. Turner, L. Nottale, J. Supercond. Nov. Magn. 29, 3113 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Turner, L. Nottale, Prog. Biophys. Mol. Biol. 123, 48 (2017)CrossRefGoogle Scholar
  43. 43.
    D. Bohm, Phys. Rev. 85, 166 (1952)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Holland, Found. Phys. 45, 134 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dept. of Physics and AstronomyUniversity of UtahSalt Lake CityUSA
  2. 2.LUTHObservatoire de ParisMeudonFrance

Personalised recommendations