Propagation and attenuation characteristics of Rayleigh waves induced due to irregular surface in liquid-saturated micropolar porous half-space

  • Alka KumariEmail author
  • Santimoy Kundu
  • Shishir Gupta
Regular Article


This paper presents a study designed to analyse the impact of corrugated interface on Rayleigh wave phase velocity and attenuation coefficient within the context of micropolar porous half-space lying under a non-viscous liquid layer. Following the fundamental equations of wave propagation given by Biot together with the suitable boundary conditions for a given geometry, the velocity equation in the complex form is derived which on further separation of the real and imaginary parts corresponds to the dispersion and attenuation equation, respectively. In order to illustrate the impact of porosity, micropolarity, undulation and position parameters on phase velocity and attenuation coefficient, the dispersion and attenuation curves are plotted with respect to the wave number by varying values of these parameters. For comparative studies, the graphs of these parameters have been plotted for two cases, one for a corrugated interface and the other one for a planar interface, and comparison of phase velocity and attenuation is made with the results obtained from the graphs. It is seen that phase velocity and attenuation are significantly influenced by wave number, presence of micropolarity, porosity and corrugated interface. Also we have obtained the important result that the waves propagate with higher velocity in a deep liquid layer.


  1. 1.
    M.A. Biot, J. Acoust. Soc. Am. 28, 168 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Biot, J. Acoust. Soc. Am. 28, 169 (1956)ADSGoogle Scholar
  3. 3.
    H. Deresiewicz, Bull. Seismol. Soc. Am. 52, 627 (1961)MathSciNetGoogle Scholar
  4. 4.
    M.Y. Corapcioglu, Wave propagation in porous media: A review, in Transport Processes in Porous Media, edited by J. Bear, M.Y. Corapcioglu (Kluwer, Dordrecht, 1991)CrossRefGoogle Scholar
  5. 5.
    J.G. Berryman, Seismic wave attenuation in fluid-saturated porous media, in Scattering and Attenuation of Seismic Waves, Part I, edited by Keiiti Aki, Ru-Shan Wu, Vol. 128 (Springer, 1988) pp. 423--432Google Scholar
  6. 6.
    M.P. Cleary, Int. J. Solids Struct. 13, 785 (1977)CrossRefGoogle Scholar
  7. 7.
    Y.S. Wang, Z.M. Zhang, J. Acoust. Soc. Am. 103, 695 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    P. Alam, S. Kundu, S. Gupta, A. Saha, Waves Random Complex Media 28, 182 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Kundu, P. Alam, S. Gupta, D.K. Pandit, J. Mech. 33, 13 (2016)CrossRefGoogle Scholar
  10. 10.
    A.C. Eringen, J. Math. Mech. 15, 909 (1966)MathSciNetGoogle Scholar
  11. 11.
    S.K. Tomar, J. Vib. Control 11, 849 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Kaur, S.K. Sharma, A.K. Singh, Mech. Adv. Mater. Struct. 24, 149 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Miglani, S. Kausal, J. Solid Mech. 4, 195 (2012)Google Scholar
  14. 14.
    R. Kumar, B. Singh, Int. J. Pure Appl. Math. 29, 657 (1998)Google Scholar
  15. 15.
    A.K. Singh, K.C. Mistri, T. Kaur, A. Chattopadhyay, Mech. Adv. Mater. Struct. 24, 200 (2015)CrossRefGoogle Scholar
  16. 16.
    S.K. Tomar, J. Kaur, Acta Mech. 190, 1 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Wolf, Pure Appl. Geophys. 78, 48 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    J. Du, X. Jin, J. Wang, Acta Mech. 192, 169 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Chattopadhyay, S. Gupta, A.K. Singh, S.A. Sahu, Appl. Math. Sci. 4, 2157 (2010)Google Scholar
  20. 20.
    S. Gupta, D.K. Majhi, S. Kundu, S.K. Vishwakarma, Appl. Math. Mech. 34, 249 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Kumar, P. Ailawalia, Sadhana 29, 605 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Kumar, R. Kumar, Canadian J. Phys. 87, 377 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S. Asano, Bull. Seismol. Soci. Am. 56, 201 (1966)Google Scholar
  24. 24.
    M.L. Gogna, Analysis of seismological data, PhD Thesis, Cambridge University, Cambridge (1969)Google Scholar
  25. 25.
    R. Kumar, S. Deswal, S.K. Tomar, J. Earth Technol. 39, 367 (2002)Google Scholar
  26. 26.
    C.H. Yew, P.N. Jogi, J. Acoust. Soc. Am. 60, 2 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    D. Gubbins, Seismology and Plate Tectonics (Cambridge University Press, Cambridge, 1990)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MatthematicsIIT(ISM)DhanbadIndia

Personalised recommendations