Advertisement

Experimental design methodology as a tool to optimize the adsorption of new surfactant on the Algerian rock reservoir: cEOR applications

  • Seif El Islam Lebouachera
  • Rachida Chemini
  • Mohamed Khodja
  • Bruno Grassl
  • Mohammed Abdelfetah Ghriga
  • Djilali Tassalit
  • Nadjib DrouicheEmail author
Regular Article
  • 12 Downloads

Abstract.

In this research work, a new surfactant called surf EOR ASP 5100 used in the SWCTT (single well chemical tracer test) in the Algerian oilfield and sodium dodecyl sulfate (SDS) were used for static adsorption tests. The Algerian rock reservoir has been characterized by different techniques such as SEM, XRD, XRF, BET analysis. The equilibrium was successfully verified by Langmuir isotherm and second-order ( \(R^2>95\%\) models for all concentrations and temperatures to predict the adsorption process. Furthermore, the adsorption process was found to be exothermic ( \(\Delta G^{\circ}<0\) . To quantify the minimal adsorbed quantity, a full factorial design of 23 (8 experiments) was applied to analyze the individual effects and interactions of operational parameters using variance analysis (ANOVA), desirability method and response surface methodology. The optimal conditions obtained are as follows: the Qe value was 2.3291mg/g for the SDS surfactant at a concentration of 200ppm and temperature of \( 25 {}^{\circ}\) C, and Qe was 3.894513mg/g for EOR ASP 5100 for the concentration of 200ppm and temperature of \( 80 {}^{\circ}\) C.

References

  1. 1.
    E. Sabah, M. Turan, M. Celik, Water Res. 36, 3957 (2002)CrossRefGoogle Scholar
  2. 2.
    S.H. Lin, H.G. Leu, Water Res. 33, 1735 (1999)CrossRefGoogle Scholar
  3. 3.
    C. Czapla, H.J. Bart, Chem. Eng. Technol. 23, 1058 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Bera et al., Appl. Surf. Sci. 284, 87 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    G. Cheraghian, Petrol. Sci. Technol. 33, 1580 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Xie et al., SPE J. 10, 276 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Seethepalli, B. Adibhatla, K.K. Mohanty, SPE J. 9, 411 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Zendehboudi et al., Can. J. Chem. Eng. 91, 1439 (2013)CrossRefGoogle Scholar
  9. 9.
    G.A. Pope, J. Petrol. Technol. 63, 65 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Worldwide, Oil Gas J. 108, 1 (2010)Google Scholar
  11. 11.
    M.A. Ahmadi, S.R. Shadizadeh, Fuel 159, 15 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Iglauer et al., J. Petrol. Sci. Eng. 71, 23 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Tabary, Improved oil recovery with chemicals in fractured carbonate formations, in SPE International Symposium on Oilfield Chemistry (Society of Petroleum Engineers, 2009)Google Scholar
  14. 14.
    K.J. Webb, C.J.J. Black, G. Tjetland. A laboratory study investigating methods for improving oil recovery in carbonates, in International Petroleum Technology Conference, 2005 (International Petroleum Technology Conference, 2005)Google Scholar
  15. 15.
    G. Moritis, Oil Gas J. 102, 49 (2004)Google Scholar
  16. 16.
    T. Hassenkam et al., Colloids Surf. A 390, 179 (2011)CrossRefGoogle Scholar
  17. 17.
    A.A. Al-Taq et al., SPE Reserv. Eval. Eng. 11, 882 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Sheng, Modern Chemical Enhanced Oil Recovery: Theory and Practice (Gulf Professional Publishing, 2010)Google Scholar
  19. 19.
    R. Saha, R.V. Uppaluri, P. Tiwari, Colloids Surf. A 531, 121 (2017)CrossRefGoogle Scholar
  20. 20.
    R. Zhang, P. Somasundaran, Adv. Colloid Interface Sci. 123, 213 (2006)CrossRefGoogle Scholar
  21. 21.
    B. Ball, D. Fuerstenau, Discuss. Faraday Soc. 52, 361 (1971)CrossRefGoogle Scholar
  22. 22.
    S. Paria, K.C. Khilar, Adv. Colloid Interface Sci. 110, 75 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Shamsi Jazeyi, R. Verduzco, G.J. Hirasaki, Colloids Surf. A 453, 168 (2014)CrossRefGoogle Scholar
  24. 24.
    J.F. Scamehorn, Equilibrium Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous Solutions (1981)Google Scholar
  25. 25.
    C.H. Wayman, Surfactant sorption on heteroionic clay minerals, in International Clay Conference Stockholm (1963)Google Scholar
  26. 26.
    K. Hu, A.J. Bard, Langmuir 13, 5418 (1997)CrossRefGoogle Scholar
  27. 27.
    P. Chandar, P. Somasundaran, N.J. Turro, J. Colloid Interface Sci. 117, 31 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    M.R. Bohmer, L.K. Koopal, Langmuir 8, 2649 (1992)CrossRefGoogle Scholar
  29. 29.
    R.F. Tabor, J. Eastoe, P. Dowding, Langmuir 25, 9785 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Ishiguro, L.K. Koopal, Adv. Colloid Interface Sci. 231, 59 (2016)CrossRefGoogle Scholar
  31. 31.
    B.-Y. Zhu, T. Gu, Adv. Colloid Interface Sci. 37, 1 (1991)CrossRefGoogle Scholar
  32. 32.
    P. Somasundaran, S. Krishnakumar, Colloids Surf. A 123, 491 (1997)CrossRefGoogle Scholar
  33. 33.
    D. Levitt, M. Bourrel, Adsorption of EOR chemicals under laboratory and reservoir conditions, part III: Chemical treatment methods, in SPE Improved Oil Recovery Conference (Society of Petroleum Engineers, 2016)Google Scholar
  34. 34.
    K. Ma et al., J. Colloid Interface Sci. 408, 164 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    K.M.K. Yu et al., J. Mater. Chem. 13, 130 (2003)CrossRefGoogle Scholar
  36. 36.
    W. Zhong, J.P. Claverie, Carbon 51, 72 (2013)CrossRefGoogle Scholar
  37. 37.
    M.A. Ahmadi, Eur. Phys. J. Plus 131, 435 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Regti et al., Microchem. J. 130, 129 (2017)CrossRefGoogle Scholar
  39. 39.
    D. Rocak, M. Kosec, A. Degen, J. Eur. Ceram. Soc. 22, 391 (2002)CrossRefGoogle Scholar
  40. 40.
    E. Sayan, M. Bayramoglu, Hydrometallurgy 57, 181 (2000)CrossRefGoogle Scholar
  41. 41.
    L. Zhang et al., J. Mol. Liq. 197, 353 (2014)CrossRefGoogle Scholar
  42. 42.
    Z. Cheng et al., Spectrochim. Acta Part A 137, 1126 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    H. Radnia, A.R.S. Nazar, A. Rashidi, J. Taiwan Inst. Chem. Eng. 80, 34 (2017)CrossRefGoogle Scholar
  44. 44.
    S.E.I. Lebouachera et al., Res. Chem. Intermediates 44, 7665 (2018)CrossRefGoogle Scholar
  45. 45.
    A. Barati et al., Chem. Eng. Res. Design 105, 55 (2016)CrossRefGoogle Scholar
  46. 46.
    D.M. Ruthven, Principles of Adsorption and Adsorption Processes (John Wiley & Sons, 1984)Google Scholar
  47. 47.
    AL. Weiss, Ber. Bunsengesell. Phys. Chem. 94, 796 (1990)Google Scholar
  48. 48.
    M. Wiśniewska, Appl. Surf. Sci. 258, 3094 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    L.-C. Juang, C.-C. Wang, C.-K. Lee, Chemosphere 64, 1920 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    D. Hank et al., J. Ind. Eng. Chem. 20, 2256 (2014)CrossRefGoogle Scholar
  51. 51.
    S. Abdul-Wahab, J. Abdo, Appl. Therm. Eng. 27, 413 (2007)CrossRefGoogle Scholar
  52. 52.
    F. Geyikçi, Prog. Org. Coat. 98, 28 (2016)CrossRefGoogle Scholar
  53. 53.
    L.S. De Lima et al., Chem. Eng. J. 166, 881 (2011)CrossRefGoogle Scholar
  54. 54.
    F. Geyikci, H. Büyükgüngör, Acta Geodyn. Geomater. 10, 363 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Goupy, L. Creighton, Introduction to Design of Experiments with JMP Examples (SAS Publishing, 2007)Google Scholar
  56. 56.
    P. Sampranpiboon, P. Charnkeitkong, X. Feng, WSEAS Trans. Environ. Develop. 10, 35 (2014)Google Scholar
  57. 57.
    M. Tagavifar et al., Colloids Surf. A 538, 549 (2018)CrossRefGoogle Scholar
  58. 58.
    M. Arabloo, M.H. Ghazanfari, D. Rashtchian, J. Taiwan Inst. Chem. Eng. 50, 12 (2015)CrossRefGoogle Scholar
  59. 59.
    S. Lagergren, K. Sven. Vetenskapsakad. Handl. 24, 1 (1898)Google Scholar
  60. 60.
    Y.-S. Ho, Water Res. 40, 119 (2006)CrossRefGoogle Scholar
  61. 61.
    C. Qi et al., Res. Chem. Intermed. 44, 2889 (2018)CrossRefGoogle Scholar
  62. 62.
    A. Mehrizad, Res. Chem. Intermed. 43, 4295 (2017)CrossRefGoogle Scholar
  63. 63.
    M.A. Ahmadi, S.R. Shadizadeh, Z. Chen, Eur. Phys. J. Plus 133, 420 (2018)CrossRefGoogle Scholar
  64. 64.
    H. Spliid, Desing and Analysis af Experiments with $k$ Factors Having $p$ Levels (2002)Google Scholar
  65. 65.
    N.A. Jarrah, Chem. Eng. J. 151, 367 (2009)CrossRefGoogle Scholar
  66. 66.
    D.N. Gujarati, Econométrie, Traduction de la 4ième édition américaine par Bernard Bernier (De Boeck, Bruxelles, 2004)Google Scholar
  67. 67.
    M. Ghaedi et al., Res. Chem. Intermed. 44, 2929 (2018)CrossRefGoogle Scholar
  68. 68.
    G. Derringer, J. Qual. Technol. 12, 214 (1980)CrossRefGoogle Scholar
  69. 69.
    L.V. Candioti et al., Talanta 124, 123 (2014)CrossRefGoogle Scholar
  70. 70.
    L. Hamdi et al., Desalin. Water Treat. 57, 6098 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Génie des Procédés IndustrielsFaculté de Génie Mécanique et du Génie des Procédés Université des Sciences et de la Technologie Houari BoumedieneAlgerAlgeria
  2. 2.SONATRACHDirection Centrale Recherche et DéveloppementBoumerdesAlgeria
  3. 3.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux, IPREM, UMR 5254CNRS Université de Pau et des Pays de l’AdourPauFrance
  4. 4.Laboratoire de Génie Physique des Hydrocarbures, Faculté des Hydrocarbures et de la ChimieUniversité M’Hamed Bougara de BoumerdesBoumerdesAlgeria
  5. 5.Unité de Développement des Equipements Solaires, UDES/EPSTCentre de Développement des Energies RenouvelablesTipazaAlgeria
  6. 6.CRTSE-Division CCPM- No. 2AlgerAlgeria

Personalised recommendations