Advertisement

Sensitivity comparison of surface plasmon resonance (SPR) and magneto-optic SPR biosensors

  • Conrad RizalEmail author
  • Vladimir Belotelov
Regular Article

Abstract.

Sensitivity of a biosensor is one of the most important parameters that determines its performance. It depends on many factors, such as excitation wavelength of incident optical radiation (\( \lambda\) , composition, type, and thickness of the ferromagnetic Co layer ( \( t_{\rm Co}\) , plasmonic Au, and high refractory metal, Ti, involved, and sensing/excitation configuration. In this paper, both the surface plasmon resonance (SPR at the magnetic field, H = 0 and magneto-optic SPR (MOSPR at H sensitivity of the sensors have been theoretically calculated in the visible wavelength regime using air-helium media as probing samples in the Kretschmann configuration, and their performances are compared side by side. The calculated MOSPR sensitivity of \( 1.25 \times 10^5\%\) /RIU (refractive index unit) at \( \lambda = 632.8\) nm is almost 12.5× larger as compared to the SPR sensitivity of \( 1.0 \times 10^4\%\) /RIU for the same geometry, excitation condition, and probing media. Likewise, the MOSPR sensitivity of \( 1.25 \times 10^5\%\) /RIU at \( \lambda\) = 632.8 nm is almost 10× larger as compared to the MOSPR sensitivity of \( 1.25 \times 10^4\%\) /RIU at \( \lambda\) = 515 nm for the same geometry and probing media. On decreasing the \( t_{\rm Co}\) , the sensitivity of the MOSPR sensor is further increased by almost 3× , from \( 1.25 \times 10^5\%\) /RIU at \( t_{\rm Co} = 8\) nm to \( 3.7 \times 10^5\%\) /RIU at \( t_{\rm Co} = 4\) nm. The sensitivity can be further improved by additional optimization of the material used and sensor configuration employed for detection.

References

  1. 1.
    C. Rizal, V. Belotelov, D. Ignatyeva, A.K. Zvezdin, S. Pisana, Condens. Matter 4, 50 (2019)CrossRefGoogle Scholar
  2. 2.
    C. Rizal, IEEE Trans. Magn. 54, 10 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Pellegrini, G. Mattei, Plasmonics 9, 6 (2014)CrossRefGoogle Scholar
  4. 4.
    D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, V.I. Belotelov, Sci. Rep. 6, 28077 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    E.A.F. Vila et al., IEEE Trans. Magn. 44, 11 (2008)Google Scholar
  6. 6.
    K. Lodewijks et al., Nano Lett. 14, 12 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Rizal, B. Niraula, H. Lee, J. Nanomed. Res. 3, 3 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Fernández-Perea et al., Phys. Rev. Lett. 111, 027404 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C. Rizal, S. Pisana, I. Hrvoic, E. Fullerton, J. Phys. Commun. 2, 2 (2018)CrossRefGoogle Scholar
  10. 10.
    W.M. Robertson, E. Fullerton, J. Opt. Soc. Am. B 6, 8 (1989)CrossRefGoogle Scholar
  11. 11.
    A. Otto, Z. Phys. A 216, 4 (1968)CrossRefGoogle Scholar
  12. 12.
    K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, Opt. Express 16, 23 (2008)ADSGoogle Scholar
  13. 13.
    C. Rizal, S. Pisana, I. Hrvoic, MDPI Biomed. Photon. Adv. 5, 3 (2018)Google Scholar
  14. 14.
    C. Rizal, Ferromagnetic Hybrid Nanostructure for Potential Clinical Applications: Theory, Design, Fabrication, Measurement, Data Analysis, & Characterization (LAMBERT Academic Publishing GmbH & Co., 2018)Google Scholar
  15. 15.
  16. 16.
    P. Johnson, R. Christy, Phys. Rev. B 9, 12 (1974)CrossRefGoogle Scholar
  17. 17.
    A.D. Rakić, A.B. Djurisić, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 22 (1998)CrossRefGoogle Scholar
  18. 18.
    J. González Díaz, B. Sepúlveda, A. GarcíaMartín, G. Armelles, Appl. Phys. Lett. 97, 4 (2010)CrossRefGoogle Scholar
  19. 19.
    C. Cuthbertson, M. Cuthbertson, Proc. R. Soc. London A 135, 826 (1932)CrossRefGoogle Scholar
  20. 20.
    P.E. Ciddor, Appl. Opt. 35, 9 (1996)CrossRefGoogle Scholar
  21. 21.
    K.-H. Yoon et al., Investig. Radiol. 47, 12 (2012)CrossRefGoogle Scholar
  22. 22.
    M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, Condens. Matter 4, 49 (2019)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical Engineering & Computer ScienceYork UniversityTorontoCanada
  2. 2.Nanophotonics LaboratoryGEM Systems Inc.MarkhamCanada
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Russian Quantum CenterBusiness-center, “Ural”MoscowRussia

Personalised recommendations