Advertisement

The Hamilton-Jacobi analysis and canonical covariant description for three-dimensional Palatini theory plus a Chern-Simons term

  • Alberto EscalanteEmail author
  • Aldair-Pantoja
Regular Article
  • 9 Downloads

Abstract.

By using the Hamilton-Jacobi (HJ) framework the three-dimensional Palatini theory plus a Chern-Simons term (PCS) is analyzed. We report the complete set of HJ Hamiltonians and a generalized HJ differential from which all symmetries of the theory are identified. Moreover, we show that despite PCS Lagrangian produces Einstein’s equations, the generalized HJ brackets depend on a Barbero-Immirzi-like parameter. In addition we complete our study by performing a canonical covariant analysis, and we construct a closed and gauge invariant two-form that encodes the symplectic geometry of the covariant phase space.

References

  1. 1.
    D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, in Springer Series in Nuclear and Particle Physics (Springer, 1990)Google Scholar
  2. 2.
    M.B. Green, J.H. Schwarz, E. Witten, Super String Theory (Cambridge University Press, Cambridge, 1986)Google Scholar
  3. 3.
    J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)Google Scholar
  4. 4.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)Google Scholar
  5. 5.
    T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)Google Scholar
  6. 6.
    A. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Roma, 1978)Google Scholar
  7. 7.
    L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, F.I. Takakura, L.M.V. Xavier, Mod. Phys. Lett. A 23, 829 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, F.I. Takakura, Int. J. Mod. Phys. A 22, 3605 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    E.M.C. Abreu, C. Neves, W. Oliveira, Int. J. Mod. Phys. A 21, 5329 (2008)Google Scholar
  11. 11.
    C. Neves, W. Oliveira, D.C. Rodrigues, C. Wotzasek, Phys. Rev. D 69, 045016 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. Neves, C. Wotzasek, Int. J. Mod. Phys. A 17, 4025 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    C. Neves, W. Oliveira, Phys. Lett. A 32, 267 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Garcia, J.M. Pons, Int. J. Mod. Phys. A 12, 451 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, R.C.N. Silva, C. Wotzasek, Phys. Lett. A 37, 3603 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    L. Liao, Y.C. Huang, Ann. Phys. 322, 2469 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Escalante, J. Manuel-Cabrera, Ann. Phys. 343, 27 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Escalante, M. Zárate, Ann. Phys. 353, 163 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A. Escalante, J. Manuel-Cabrera, Ann. Phys. 36, 1585 (2015)Google Scholar
  20. 20.
    A. Escalante, O. Rodríguez-Tzompantzi, Ann. Phys. 364, 136 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Barcelos-Neto, C. Wotzasek, Mod. Phys. Lett. A 7, 1737 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    J. Barcelos-Neto, C. Wotzasek, Int. J. Mod. Phys. A 7, 4981 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    C. Crnkovi’c, E. Witten, in Three Hundred Years of Gravitation, edited by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987)Google Scholar
  24. 24.
    Y. Güler, J. Math. Phys. 30, 785 (1989)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Caratheodory, Calculus of Variations and Partial Diferential Equations of the First Order, 3rd edn (American Mathematical Society, 1999)Google Scholar
  26. 26.
    M.C. Bertin, B.M. Pimentel, C.E. Valcárcel, Ann. Phys. 323, 3137 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    M.C. Bertin, B.M. Pimentel, C.E. Valcárcel, J. Math. Phys. 55, 112901 (2014)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Bonzom, E.R. Livine, Class. Quantum Grav. 25, 195024 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Montesinos, Class. Quantum Grav. 23, 2267 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    A. Escalante, Phys. Lett. B 676, 105 (2009)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Escalante, C. Medel-Portugal, Ann. Phys. 391, 27 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    S. Holts, Phys. Rev. D 53, 5966 (1996)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Montesinos, Class. Quantum Grav. 18, 1847 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    D. Jimenez-Rezende, A. Perez, Phys. Rev. D 79, 064026 (2009)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Escalante, J. Manuel-Cabrera, Ann. Phys. 361, 585 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Escalante, J. Manuel-Cabrera, Eur. Phys. J. C 77, 303 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    N.T. Maia, B.M. Pimentel, C.E. Valcárcel, Class. Quantum Grav. 32, 185013 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A. Escalante, Prihel-Cavildo-Sánchez, Adv. Math. Phys. 2018, 3474760 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Escalante, O. RodrRodríguez-Tzompantzi, J. High Energy Phys. 05, 073 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPuebla Pue.Mexico

Personalised recommendations