Advertisement

Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE

  • Abdullahi Yusuf
  • Mustafa Inc
  • Aliyu Isa Aliyu
  • Dumitru BaleanuEmail author
Regular Article
  • 11 Downloads
Part of the following topical collections:
  1. Focus Point on “Fractional Differential Equations in Physics: Recent Advantages and Future Direction”

Abstract.

In this research we obtain some dark and singular solitons for the resonance perturbed nonlinear Schrödinger equation (NLSE) with beta derivative (BD). Two well-known analytical approaches have been utilised to extract the results. The constraints conditions are stated for the well-being and existence of the results. Some figures have been plotted to demonstrate the physical behavior of the obtained solutions.

Notes

References

  1. 1.
    K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, 2010)Google Scholar
  2. 2.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  3. 3.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  4. 4.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, San Diego, 1974)Google Scholar
  5. 5.
    V. Kiryakova, Pitman Res. Notes Math. 301, 189 (1994)Google Scholar
  6. 6.
    A.M.A. El-Sayed, M. Gaber, Phys. Lett. A 359, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Qureshi, A. Yusuf, Chaos, Solitons Fractals 122, 111 (2019)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Atangana, B.T. Alkahtani, Chaos, Solitons Fractals 89, 566 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Atangana, Neural Comput. Appl. 26, 1895 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Chaos 29, 013143 (2019)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R.K. Gazizov, N.H. Ibragimov, S.Y. Lukashchuk, Commun. Nonlinear Sci. Numer. Simul. 23, 153 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S.Y. Lukashchuk, Nonlinear Dyn. 80, 791 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Ghanbari, A. Yusuf, M. Inc, D. Baleanu, Adv. Differ. Equ. 2019, 49 (2019)CrossRefGoogle Scholar
  15. 15.
    K. Hosseini, A. Bekir, R. Ansari, Optik 132, 203 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Inc, H.I. Abdel-Gawad, M. Tantawy, A. Yusuf, Math. Methods Appl. Sci. 42, 2455 (2019)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H.I. Abdel-Gawad, M. Tantawy, M. Incz, A. Yusuf, Mod. Phys. Lett. B 32, 1850353 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    M. Inc, A. Yusuf, A.I. Aliyu, D. Baleanu, Physica A 493, 94 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Baleanu, M. Inc, A. Yusuf, A.I. Aliyu, Commun. Nonlinear Sci. Numer. Simul. 59, 222 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, New York, 1998) p. 198Google Scholar
  21. 21.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)Google Scholar
  22. 22.
    J. Singh, D. Kumar, M. Al Qurashi, D. Baleanu, Adv. Differ. Equ. 2017, 88 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    M. Caputo, M. Fabricio, Prog. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  25. 25.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)Google Scholar
  27. 27.
    R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, J. Comput. Appl. Math. 264, 65 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Atangana, D. Baleanu, A. Alsaedi, Open Math. (2015)  https://doi.org/10.1515/math-2015-0081
  29. 29.
    Y. Cenesiz, D. Baleanu, A. Kurt, O. Tasbozan, Waves Random Complex Media 27, 103 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S. He, K. Sun, X. Mei, B. Yan, S. Xu, Eur. Phys. J. Plus 132, 36 (2017)CrossRefGoogle Scholar
  31. 31.
    T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    W.S. Chung, J. Comput. Appl. Math. 290, 150 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Cenesiz, A. Kurt, J. New Theor. 7, 79 (2015)Google Scholar
  34. 34.
    Xiao-Jun Yang, Feng Gao, H.M. Srivastava, J. Comput. Appl. Math. 339, 285 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Xiao-Jun Yang, Feng Gao, Rom. Rep. Phys. 69, 113 (2017)Google Scholar
  36. 36.
    Jagdev Singh, Devendra Kumar, Juan J. Nieto, Entropy 18, 206 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    X.J. Yang, J.A.T. Machado, J.J. Nieto, Fundam. Inform. 151, 63 (2017)CrossRefGoogle Scholar
  38. 38.
    Xiao-Jun Yang, J.A. Tenreiro Machado, Math. Methods Appl. Sci. 40, 6070 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xiao-Jun Yang, H.M. Srivastava, J.A. Tenreiro Machado, Therm. Sci. 20, 753 (2016)CrossRefGoogle Scholar
  40. 40.
    Ai-Min Yang, Yang Han, Jie Li, Wei-Xing Liu, Therm. Sci. 20, 717 (2016)CrossRefGoogle Scholar
  41. 41.
    Xiao-Jun Yang, Feng Gao, J.A. Tenreiro Machado, Dumitru Baleanu, Eur. Phys. J. ST 226, 3567 (2017)CrossRefGoogle Scholar
  42. 42.
    C. Cattani, Front. Phys. 6, 118 (2018)CrossRefGoogle Scholar
  43. 43.
    Xiao-Jun Yang, Proc. Rom. Acad. Seri. A 19, 45 (2018)MathSciNetGoogle Scholar
  44. 44.
    Xiao-Jun Yang, J.A. Tenreiro Machado, Dumitru Baleanu, Rom. Rep. Phys. 69, 115 (2017)Google Scholar
  45. 45.
    A. Atangana, D. Baleanu, A. Alsaedi, Open Phys. 14, 145 (2016)CrossRefGoogle Scholar
  46. 46.
    X.F. Yang, Z.C. Deng, Y. Wei, Adv. Differ. Equ. 2015, 117 (2015)CrossRefGoogle Scholar
  47. 47.
    M.A. Salam, M.S. Uddin, P. Dey, Ann. Pure Appl. Math. 10, 1 (2015)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsFirat University, Science FacultyElazigTurkey
  2. 2.Department of MathematicsFederal University Dutse, Science FacultyJigawaNigeria
  3. 3.Department of MathematicsCankaya UniversityAnkaraTurkey
  4. 4.Institute of Space SciencesBucharestRomania

Personalised recommendations